
A. Regression networks
The network architecture and ground truth preparation

for each component are described in detail.

A.1. Backbone network
The backbone network is implemented to include layers

0-2 from ResNet-34 [8] for general image encoding. It out-
puts a w

8 ⇥ h
8 ⇥ 128 feature map, where h and w indicate

height and width of an input image respectively. We choose
to maintain 8⇥ downsampling level in the following func-
tional branches to make part-level inference both efficient
and capable of handling human parts at a distance.

A.2. Heatmap branch
The heatmap branch is designed to predict K + 1 con-

fidence maps corresponding to K body part and the back-
ground. The heatmap branch is made of five 3 ⇥ 3 convo-
lutional layers as illustrated in Figure 8. It is worth noting
that every convolutional layer mentioned in our method is
followed by BN and ReLU layers. To prepare ground-truth
part confidence maps {H⇤

j }
K+1
j=1 , we adopt the same method

introduced in OpenPose [3], which applies a Gaussian filter
at each part location.

Figure 8. Heatmap branch. The heatmap branch predicts K
confidence maps for body parts with an additional map for back-
ground.

A.3. Depth branch
The depth branch predicts part-wise depth maps, which

is meaningful in relieving the effect from raw depth artifacts
and in recovering the true depth of a part under occlusion.
The network is made of five convolutional layers whose spe-
cific architecture is shown in Figure 9.

Figure 9. Depth branch. The depth branch outputs K depth
maps for K body parts, respectively.

To prepare ground-truth depth maps {D⇤
j }Kj=1, each map

is initialized with the resized raw depth input. The depth
values within a 2-pixel-radius disk centered at each part j
are overridden with the ground-truth depth of part j, as il-
lustrated in Figure 9. In a multi-person scenario, if a 2D
grid position is occupied by masks of more than one part
instance, the writing of depth values follows a standard z-
buffer rule where the smallest depth value is recorded. In
addition, the weight maps {W d

j }Kj=1 are prepared in the
same dimension as the ground-truth depth maps. We use
weight 0.9 for a foreground grid while 0.1 for the back-
ground.

A.4. TPDF branch
TPDF maps are predicted from the TPDF branch imple-

mented following the architecture as shown in Figure 10.
During ground-truth preparation, {X⇤

j }Kj=1 and {Y ⇤
j }Kj=1

are prepared so that the displacement vector at a 2D po-
sition points to the closest part position. Specifically, the
displacement vector is only non-zero within the truncated
range (r = 2) from each part position, as shown in Fig-
ure 10. The preparation of weight maps {W t

j }Kj=1 is similar
to the process for the depth branch. However, the weights
within the truncated mask is set to 1.0 and the rest is set to
strict 0.

Figure 10. TPDF branch. The TPDF branch outputs 2K maps of
displacement vectors {Xj}Kj=1, {Yj}Kj=1. The field visualization
follows the optical flow standard.

A.5. Global pose network
The global pose network predicts a global pose map

from concatenated features from the backbone and func-
tional branches. The network includes four convolutional
layers where the first is followed by a max pooling to cast
the feature map to 16⇥ downsampling level, as shown in
Figure 11.

The ground-truth preparation process is similar to
Yolo2 [25]. Specifically, the ground-truth global pose
map P

⇤ is prepared so that each grid records five
bounding box attributes and a set of pose attributes
{(dxa

j , dy
a
j , Z

a
j , v

a
j )}Kj=1 of the ground-truth pose for each

associated anchor a. Specifically, (dxa
j , dy

a
j ) indicates the

2D offsets of part j from the anchor center, Za
j indicates

the 3D part depth, and v
a
j indicates the visibility of part

j. The value of vaj is assigned to 1 when the depth from



a global pose part Za
j is different from the corresponding

depth branch ground-truth in Dj , otherwise it is assigned
to 0. The weight map W

p is prepared in the same dimen-
sion as P ⇤. For the dimensions corresponding to bounding
box probabilities, 0.9 is applied to the grids associated with
ground truth, while 0.1 is assigned to the rest. For the other
dimensions, the weights are strictly assigned to 1 or 0. The
weight map is designed in such a way because the detection
task related to pb considers both foreground and background
while the regression task to other attributes focuses only on
foreground.

Figure 11. Global pose network. The global pose network is
composed of four 3⇥ 3 convolutional layers, where an additional
max-pooling is involved in the first layer. The network outputs an
anchor-based global pose map, which is converted to a set of poses
after NMS.

B. Depth Augmentation
Given camera intrinsic parameters, the captured depth

map, and associated 2D/3D poses, novel depth maps and
associated 2D/3D poses can be generated via simulating the
camera re-positioned along the principle axis. Specifically,
suppose a 3D point (X,Y, Z0) in the original camera coor-
dinate frame with projection at (x0, y0) in the original im-
age is placed at (X,Y, Z1) in the new camera coordinate
frame and be projected to (x1, y1) in the new image, we can
write the following relationships based on similar triangles:

X

x1 � cx
=

Z1

f
=

Y

y1 � cy
(9)

X
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Z0
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=
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y0 � cy
(10)

where (cx, cy) represents the principle point in both images,
and f indicates the focal length. Dividing the first equation
by the second, we get:

a =
x0 � cx

x1 � cx
=

y0 � cy

y1 � cy
=

Z1

Z0
(11)

Thus, a new depth image can be simply generated via ran-
domly sampling a within a reasonable range, and mapping

the area defined by the original four image corners to the
new locations in the new image. Meanwhile, the depth val-
ues of the new image and the associated 2D and 3D body
part positions can also be calculated. This depth augmenta-
tion method is rather effective. However, it can not simulate
the dis-occlusion from a different camera location, such that
the augmented depth data can not fully represent the qual-
ity of real captured data. In practice, the synthesized depth
is directly determined by the original depth and a, whose
effect is analysed in Section 4.3.

C. Multi-Person Data Augmentation
Multi-person and background data augmentation plays

an important role in training models generalizable to un-
controlled multi-person scenarios. Such augmentation is
enabled by the training data of MP-3DHP, which not only
includes ground-truth 3D joint positions but also the fore-
ground masks. Specifically, the training set includes hu-
man subjects recorded at four different locations relative to
the camera plus a set of free-style movements, as shown
in Figure 6 (top) and a set of background-only images as
shown in the left two images in Figure 6 (bottom). Given a
set of background-only images, a human segment from the
training set can be used to simply override the pixels within
the same region, leading to a background augmented image
as shown in Figure 12 (Top). Similarly, human segments
from different recording locations can be composed with
random background images following the z-buffer rule to
generate multi-person augmented images as shown in Fig-
ure 12 (Bottom).

Figure 12. Augmented training samples. (Top) Single-person
training samples augmented with a random background scene.
(Bottom) Augmented multi-person training sample composed
from multiple single-person training samples and a random back-
ground scene.

There are a few heuristics associated with the simple



augmentation. First, we include no more than two bodies
in the multi-person augmentation with an assumption that
inter-person occlusion cases between two bodies can well
represent the inter-person occlusion cases between more
bodies. Second, the straight-forward composition does not
consider scene geometry, thus some generated cases appear
unrealistic. However, the conflict with scene geometry is
not considered a serious issue in training because all the
pipelines only adopt convolutional layers learning that only
relies on the local context between a body part and the back-
ground in its vicinity rather than the whole scene. Finally,
there are sensor artifacts around each human segment that
can not be perfectly removed. This issue indeed affects the
generalization capability of a trained model to the real data.
For example, an occluded part from the augmented data is
still roughly visible because of the black margin around the
human segment, however an occluded part appears truly in-
visible in real data. Examples of multi-person augmentation
and background augmentation are visualized in Figure 12.

D. Effectiveness of data augmentation
The effectiveness of the depth augmentation (D Aug)

method and the composition augmentation (C Aug) are an-
alyzed. The depth augmentation considers different ranges
of a. The composition augmentation includes background
augmentation (BG Aug) and multi-person augmentation
(MP Aug). Experiments have been conducted with a focus
on the multi-person real testing set as these augmentation
methods were motivated towards this ultimate task. How-
ever, the data augmentation methods are not limited to PoP-
Net, but applicable to any method trained on MP-3DHP.

D Aug C Aug 2D PCK 3D PCK 2D mAP 3D mAP
0.7-1.7 w\o 0.411 0.246 0.374 0.158
0.7-1.7 BG Aug 0.769 0.634 0.748 0.550
0.7-1.7 MP Aug 0.839 0.708 0.799 0.606
w\o MP Aug 0.610 0.481 0.617 0.427
0.5-2.5 MP Aug 0.835 0.648 0.785 0.508

Table 7. Ablation study on data augmentation.

As observed from Table 7, background augmentation
leads to a significant improvement (over 30%) compared
to the baseline without any composition augmentation (2nd
row vs. 1st row). Multi-person augmentation (3rd row)
leads to another leap (about 5%). On the other hand, the
specific depth augmentation also plays a critical role in im-
proving the robustness (about 18% increase in 3D mAP, 3rd
row vs. 4th row), especially for objects from unobserved
scales. However, further extension of the depth augmenta-
tion range leads to a drawback in 3D mAP ( 10%, 5th row
vs. 3rd row), which is reasonable because the depth aug-
mentation method can not fully simulate the data far beyond
the original captured distance.

E. Detailed running speed analysis
The efficiency of a method is measured in a few differ-

ent metrics. First, the network complexity is measured in
MACs (G), which directly relates to the network inference
time. Second, a method’s average running time on an image
including a single person (SP) is reported in milliseconds
per image (ms/im). This metric considers not only network
inference time, but also the essential pre-process to provide
bounding boxes or the post-process to extract human poses.
Third, a method’s average running time on images includ-
ing multiple people (MP) is also reported in milliseconds
per image (ms/im). Finally, a method’s average running
speed on images including multiple people is measured by
fps which is equivalent to the metric in ms per image on MP
data. Every method has been tested on a single RTX 2080Ti
GPU, and is evaluated in all the metrics as shown in Table 8.

Yolo-Pose+ Open-Pose+ A2J PoP-Net
MACs(G) 4.4 6.7 16.6 6.2
SP (ms/im) 4.5 20 14 11
MP (ms/im) 4.5 21 32 11
MP (fps) 223 48 32 91

Table 8. Running time analysis on multi-person data.

As observed from MACs (G) scores, Yolo-Pose+ has the
lightest network, while A2J has significantly more com-
plex network compared with others. However, consider the
pipeline running time, Open-Pose+ is much slower than the
others on single-person images. This indicates that the part
association post-process involved in Open-Pose+ is a much
heavier process compared with the simple post-process used
in Pop-Net. On the other hand, although A2J uses a more
complex network, it almost has no post-processing cost so
that its efficiency on single-person images is even better
than Open-Pose+. Finally, as observed from multi-person
pipeline running time and speed, the efficiency of A2J drops
significantly while the other single-shot methods are not af-
fected. Overall, PoP-Net shows significant advantages in ef-
ficiency, which almost triples A2J and doubles Open-Pose+
in multi-person scenarios. It can be anticipated that the
speed advantage of PoP-Net will be more dominating when
more people are involved.

F. Application
For AR/VR applications, we demonstrate that our pre-

diction of 3D human body parts enables the virtual avatar
driving where 3D motion capture plays a key role. As
shown in Figure 13, we convert a sequence of predicted 3D
joint positions into the rotation angles of each joint to drive
the animated virtual avatar. The supplemental video shows
a frame-by-frame avatar-driving animation, and the result is
further smoothed by inter-frame filtering. Here, we show



the result by recovering the rotation angle of each joint, and
the pelvis position is fixed in a certain location.

Figure 13. Virtual avatar driving results. The left column shows
the input depth images and the right column shows the correspond-
ing virtual avatar interaction.

G. Qualitative comparison
In order to demonstrate that PoP-Net achieves the state-

of-the-art and the proposed MP-3DHP represents real-
world challenges, we compare the predicted poses from
competing methods on a set of challenging cases. As shown
in Figure 14, we demonstrate visual comparison on: (1)
an example including a target human captured far beyond
the observation range in the training; (2-3) examples hav-
ing severe background occlusion; (4-5) examples including
multi-person occlusion and considerable truncation; and (6)
an example with unobserved poses from training. As ob-
served, PoP-Net in general is more reliable across all these
cases. However, all methods failed on some most challeng-
ing cases. Such observation indicates that there is still huge
room for improvement towards a robust approach in real-
world challenges.

H. Visual comparison in videos
To provide a direct visual comparison between different

methods, we also provide supplemental material in video
format. Specifically, visual results of candidate methods are
composed into a video including different multi-person con-
figurations recorded at two different scenes. Within each
video frame, Open-Pose+ [3, 14], Yolo-A2J [36] and PoP-
Net (ours) are visually compared to Azure Kinect outputs.
We chose to compare to Kinect on raw videos for compari-
son rather than the manually verified testing set in order to
show there are cases our method even outperforms Kinect.
It is also worth noting that Kinect results are cropped from
images with larger FOV compared to the other methods,
such that some poses under huge truncation are still accu-
rately visualized.
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Figure 14. Visual comparison of competing methods on challenging cases.


