
Supplementary Material
Remeshing Algorithm

At first, a coarse approximation of the input mesh is built.
To coarsen the surface meshes we employ the Garland-
Heckbert-algorithm for surface simplification using quadric
error metrics [13]. It simplifies the mesh by collapsing
edges until the target number of faces is reached, always
contracting the pair of edges with the lowest cost. The cost
measures the shape changes. As in [46], we regularize the
edge lengths to have regularly distributed vertices. Addi-
tionally, we prevent the algorithm from contracting edges,
that lead to non-manifold edges in the mesh.

The coarse approximation of the input mesh is subdi-
vided to the desired level of subdivision.

Now, the resulting semi-regular mesh MSR has to be fit
to the original irregular mesh MIR in order to describe the
surface well.

We chose stochastic gradient descent to optimize a loss
function that describes how well the semi-regular mesh fits
to the irregular mesh. The loss function is optimized with
respect to a deformation vector, that contains a 3D offset for
each vertex of the semi-regular mesh MSR. The loss func-
tion employs the average chamfer distance between sam-
pled points SIR from the surfaces described by the original
mesh MIR and sampled points SSR from the iteratively
deformed semi-regular mesh MSR respectively. We use the
following definition of the chamfer distance [1] which mea-
sures the average squared distance between each point in set
SIR to its nearest neighbor in the other set SSR.

davgCD(SIR, SSR) =
1

|SIR|
∑

x∈SIR

min
y∈SSR

∥x− y∥22+

1

|SSR|
∑

y∈SSR

min
x∈SIR

∥x− y∥22

Additionally, we regularize the lengths of the edges of
MSR, smooth the Laplacian of MSR and enforce consis-
tency across the normals of neighboring faces of MSR. The
regularization terms are weighted. To fit the semi-regular
mesh to the original irregular mesh we utilize an implemen-
tation in Pytorch3D [37] that is based on [37]2.

Note that if for a deforming shape the mesh topology
stays constant over time, one can just remesh one unde-
formed template mesh. The semi-regular remeshing result
is parameterized and transferred to the meshes at the differ-
ent timesteps, which describe the same shape. For that, after
projecting the vertices of the semi-regular mesh to the clos-
est face of the irregular template mesh, we can calculate the
barycentric coordinates and obtain a parametrization. This

2https://pytorch3d.org/tutorials/deform_source_
mesh_to_target_mesh

parametrization of the remeshing result can be applied to
the other deformed meshes and the complete sequence of
the deforming shape is discretized by semi-regular meshes.
Note that this is for simplification of the overall workflow,
and for ease of visualization of the galloping sequences.
In principle, a parametrization can be calculated for every
timestep between the irregular mesh and the semi-regular
mesh.

Tables and Figures

As an addition to the architecture’s description in section
5 and visualization in Figure 3 we give a detailed distribu-
tion of parameters over the hexagonal convolutional, fully
connected, and pooling layers in Table 5.

Layer Output Shape KS Param.
Input (•, 3, 111) 0
HexConv (•, 16, 111) 2 912
Pooling (•, 16, 33) 0
HexConv (•, 32, 33) 1 3584
Pooling (•, 32, 6) 0
Fully Connected (•, 8) 2312

Hidden Representation for each patch of size 8
Fully Connected (•, 32, 6) 2592
Unpooling (•, 32, 33) 0
HexConv (•, 16, 33) 1 3584
Unpooling (•, 16, 111) 0
HexConv (•, 16, 111) 2 4864
HexConv (•, 3, 111) 1 336

Table 5. Structure of the autoencoder. The bullets • reference the
corresponding batch size. The data’s last dimension is the num-
ber of vertices considered for each padded patch. For hexagonal
convolutional layers the kernel size (KS) is given.

Figure 9 shows more reconstruction results of our archi-
tecture and the baseline CoMA [36] and Neural3DMM [6]
autoencoder on test samples from the GALLOP and FAUST
dataset.

Figure 10 shows the embedding in the low-dimensional
space for the TRUCK’s left front beam. The beam deforms
in two different branches, which manifests in the embed-
ding. The results are similar to [4, 17].

For the YARIS and TRUCK dataset we visualize in Fig-
ure 11 and Figure 12 respectively the selected car compo-
nents, whose deformation over time we analyze with the
mesh autoencoder for semi-regular meshes. All the compo-
nents have different mesh representations, which we handle
with only one autoencoder.

Original Mesh CoMA [36] Neural3DMM [6] Our Reconstruction

Horse
t = 43

time 43 part horse true time 43 part horse predicted time 43 part horse predicted time 43 part horse predicted

Camel
t = 43

time 43 part camel true time 43 part camel predicted
time 43 part camel predicted time 43 part camel predicted

FAUST
known
pose

pose 9 body faust9 true
time 99 part faust4 predicted predicted: pose 9 body faust9 faust_knownposes pose 9 body faust9 predicted

FAUST
unknown
pose

pose 9 body faust1 true

time 19 part faust4 predicted predicted: pose 9 body faust1 faust_dim01
pose 9 body faust1 predicted

FAUST
unknown
pose

pose 8 body faust1 true

time 18 part faust4 predicted

predicted: pose 8 body faust1 faust_dim01

pose 8 body faust1 predicted

0.00 0.005 >0.01

Figure 9. Additional reconstructed GALLOP and FAUST test samples by CoMA [36], Neural3DMM [6], and our network. The mean
squared error of the reconstructed faces is highlighted.

Figure 10. Embedding of the TRUCK’s left front beam for t =
10, . . . , 30. 32 simulations deform in two branches. Color en-
codes timestep and branch.

Figure 11. Selected car components in the YARIS dataset.

Figure 12. Selected car components in the TRUCK dataset.

