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1. Backbone Architecture
1.1. Server Model

We also use two auxiliary loss branches at the end of the
first and second stages of the deconvolutional layers just as
in [8]. Each branch decreases the features to the number
of labels using 1x1 convolution with batch normalization
and then bilinear upsampling to match the input resolution.
We consider the tasks of semantic labeling, depth predic-
tion, and surface normal prediction. For all equations be-
low, α1 is 0.6, and α2 is 0.5 for the auxiliary loss balancing.
The encoder is ResNet-50[3] with full pre-activation resid-
ual units[4] and multi-scale residual units [8] with varying
dilation rates. After the encoder, we use the efficient atrous
spatial pyramid pooling module (eASPP) [8] to create the
bottleneck. The output of this is 16-times down-sampled.

For the decoder, we use three stages comprising of con-
volutional and deconvolutional layers. The first stage is up-
sampled by a factor of 2. The second stage concatenates
those results with the first skip refinement from the encoder
with a 1x1 convolution. That result is passed through two
3x3 convolutions followed by a deconvoluional layer that
upsamples by a factor of 2. The second stage is the same
as the second stage except using the 2nd skip refinement
from the encoder. The output is then finally used as the in-
put to a 1x1 convolutional transpose to reduce the number
of feature channels to the desired output for the task which
is then upsampled 4x to match the input resolution. This is
better seen in code[1]. We find for multi-task learning, the
auxiliary branch losses help improve results, discussed in
Section 3.

1.2. Mobile models

The mobile models are very similar in structure to the
server model. We use the same number of branches, u-net
decoder layers, auxiliary losses, and loss balancing. The
differences are the encoders being variants of Mobilenet and
mobilenet v3 like discussed in the paper. Full mobile dia-
grams are included as separate PDFs with this supplemen-
tary.

Both mobile models are float16 quantized with TFLite.
With the mobile models, we predict disparity (scale-shift in-

variant inverse depth) instead of absolute depth since abso-
lute depth is a more difficult task and it doesn’t scale well to
many individual devices such as mobile phones with several
different cameras. However, there is an issue with scale-
shift invariant depth in that it is not guaranteed to be in any
set range. Since float16 needs to be below 65536, this can
cause some errors if the values are too high (or too low if
they go below the precision limit). To solve this, we also
in 0.25 * the depth loss described in the paper to keep the
predictions in a valid range.

1.3. Architecture Hyper-parameters

We use the same training hyper-parameters to allow for
fair evaluation. For the synthetic Scenenet ablation studies,
we use a batch size of 16 320x240 images for 150,000 itera-
tions with no data augmentation as Scenenet is considerably
large and we wished to remove the effect data augmentation
can have on training. For the real data, we use an input of
768x384 with a batch size of 8 for single tasks and 6 for
multi-task with data augmentations of random flips, crops,
and lighting changes used. We use a learning rate of 0.001
that has a polynomial decay with a decay step of 30,000 and
a decay power of 0.9. We use a weight decay of 0.0005 and
batch normalization decay of 0.99. We use an Adam solver
with β1 = 0.9 and β1 = 0.999. The eASPP parameters are
the same as in [8] with an eAspp rate of 3, 6, and 12 for the
three stages. For the four encoder stages, we use residual
units of 3, 4, 6, and 3 and a filter size of 256, 512, 1024, and
2048 with strides of 1, 2, 2, and 1 respectively. We initialize
our encoder with ImageNet weights in our experiments but
for the newly learned layers we use He initialization [3] (see
code [1]).

2. Metrics
For depth metrics, we use the well established metric

in Equation 1 where δ is 1.25, 1.252, and 1.253. y is the
ground truth pixel-wise depth and z is the final output of the
task decoder. Some papers also include relative depth and
root-mean squared error which are also easy to compute but
for ease of reading we have avoided including these.
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Single-Task Normals % < Depth % < Semantics

Method 11.25 22.5 30 1.25 1.252 1.253 mIoU

Normals 83 91.5 93.8 - - - -
Depth - - - 86.1 95.3 97.5 -
Semantics - - - - - - 50.3

Table 1: Here are the individual results for each modality on the
Scenenet dataset. For this, each method is trained and evaluated
on only one task which is why we indicate - on the others. On each
of these results, higher is better.

For surface normal metrics, we use the metrics in Equa-
tion 2 where δ is 11.25, 22.5, and 30. ŷ is the ground
truth pixel-wise surface normal and ẑ is the final output
of the task decoder both normalized to a unit vector where
each normal is also clipped between -1.0 and 1.0 in case
of rounding errors. We also consider mean average error
which is simply the mean of the result of the left hand side
of the equation (ignore δ) across all valid pixels.
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For semantic labeling metrics, we use the mean intersec-
tion over union shown in Equation 3. y is the ground truth
pixel-wise depth and z is the final output of the task decoder.
This is common and we will not discuss it at length here.

mIoU =

n∑
i=0

yi ∩ zi
yi ∪ zi

(3)

2.1. Datasets

Our ablation studies are done on the Scenenet RGB-D
dataset [6]. Scenenet RGB-D is a set of 5 million syn-
thetic 320x240 RGB-D images from more than 15,0000
trajectories of synthetic layouts with random object poses
with random lighting and texture synthesis. It’s excellent
for testing our method as the tasks predicted (semantic la-
bels, depth, and surface normals) are vulnerable to frequent
noise in real-world datasets where the depth data is col-
lected from noisy time-of-flight sensors, the normals are
calculated from the depth, and the semantic labels are of-
ten crowd-sourced, with propagated errors. To create the
fairest ablation environment, we use no data augmentation
with the all of the same hyper parameters and the given im-
age size of 320x240 as input to our network.

We also use two real-world datasets to verify that our
method works well on real-world data. For the surface nor-
mals of the real-world data, it is important the ground truth

is accurate, and we use the method [5] described in Sec-
tion 2.2 to calculate these.

Scannetv2 [2] is a dataset of approximately 2 million
1296x968 RGB images with 640x480 depth sensor images
with included semantic segmentation labels. These labels
were annotated in 3D and then back-projected into 2D,
which allows for more labeled images but the annotations
can be less accurate. For the semantic labels, we use the
top 20 of the NYU40 split. We resize the RGB and depth
images to 768x384 as in [8] as to fit onto a single Titan X
GPU with a batch size of 8. For multi-task training, we
reduce the batch size to 6 as the early-fission architecture
doesn’t fit with 8. We then train using 8 titan GPUs using
synchronized training.

NYUDv2 [7] is a dataset of indoor environments taken
with a Kinect device with 640x480 RGB-D pairs. Semantic
labels are created for 1449 of these images, split into pre-
defined train and test sets. There are 13 and 40 class label
splits that literature uses for comparisons.

2.2. Surface Normal Ground Truth

To create ground truth surface normals, we use the
method from [5] as it generates clean, semantically cor-
rected surface normals. We use the parameters recommend
by the authors, which are a depth in-painting window-size
of 5, a normal max depth change factor of 0.02, a normal
adaptive smoothing window of 10 for synthetic data and 30
for real-world data, and a planar threshold parameter of 0.4,
which controls whether semantic planar surfaces are joined.

3. Auxiliary Loss Ablation Study
Recall the loss equations from the paper where each loss

for the tasks has two auxiliary losses weighted with α1 and
α2. Given that these are computed at the two stages of the
decoder that are shared between tasks in mid fission, it is not
clear whether these would help or cause task interference.
In this study shown in Table 2, we aim to explore this issue.
We evaluate the mid fission strategy without loss balancing
using the same mid fission architecture and evaluation de-
scribed in the Fission-scheme Ablation Study section of the
paper. Results considering both loss balancing and depth
are shown in Tables 54.

To evaluate this, we test four different auxiliary loss
strategies: no auxiliary losses denoted α = 0 (α1 = 0,α2 =
0 for both normals and semantic labels), both auxiliary
losses denoted α∗ = 0.6, 0.5 (α1 = 0.6,α2 = 0.5 for both
semantics and normals), only auxiliary loss for normals de-
noted as αs = 0 (α1 = 0.6,α2 = 0.5 for normals,α1 =
0,α2 = 0 for semantic labels), and only auxiliary loss for
semantic labels denoted as αn = 0 (α1 = 0.6,α2 = 0.5 for
semantic labels,α1 = 0,α2 = 0 for normals). We do this for
both semantic label initialization and surface normal initial-
ization as this can have a joint effect on training.



Method Normals Semantics

% < 11.25 % < 22.5 % < 30 MAE mIoU

Individually Trained Baselines
Normals 83 91.5 93.8 8.3 -
Semantics - - - - 50.3

Initialized from Labels
All α = 0 70.1 87.2 91.4 11.9 51.7
α∗ = 0.6, 0.5 71.3 87.5 91.6 11.6 51.6
αs = 0 76 89.1 92.5 10.4 52.2
αn = 0 61.9 84.4 89.8 13.6 51.7

Initialized from Normals
All α = 0 77.4 89.8 92.9 10.1 50.8
α∗ = 0.6, 0.5 79.3 90.5 93.5 9.4 51.8
αs = 0 81.9 91 94 8.7 50.4
αn = 0 75.8 89.5 92.9 10.4 51.7

Table 2: Joint Normals and Semantics results with different aux losses using our proposed mid fission without loss balancing.

Method Normals Semantics

% < 11.25 % < 22.5 % < 30 MAE mIoU

Individually Trained Baselines
Normals 83 91.5 93.8 8.3 -
Semantics - - - - 50.3

Initialized from Labels
λn = 1.0 71.3 87.5 91.6 11.6 51.6
λn = 5.0 74.5 88.6 92.2 10.8 49.1
λn = 10.0 78.2 89.8 92.9 9.8 49
λn = 15.0 78.9 90.1 93.2 9.6 48.7

Initialized from Normals
λn = 1.0 79.3 90.5 93.5 9.4 51.8
λn = 5.0 80.5 91 93.8 9.2 51.8
λn = 10.0 86.6 93.4 95.3 7 51.2
λn = 15.0 86.6 93.4 95.3 7 50

Table 3: Joint Normals and Semantics results with different loss balancing using our proposed mid fission.

Surprisingly, the semantic mean IoU is mostly un-
changed when initialized from the single task trained solely
on semantic labels, where the highest accuracy is actually
where only surface normal auxiliary losses are used. The
semantic prediction is even higher than our results in Table
1 in the paper but the surface normal prediction is signifi-
cantly worse. When initialized from the single task trained

solely on surface normals, surface normal metrics are much
closer to the single task results whereas semantic label pre-
dictions are still outperforming the single task results and
come close to results when initialized by label prediction.
Our hypothesis for this is that surface normals are a better
initialization task given their reliance on edge and surface
based features.



4. Loss Balancing Ablation Study

Empirical tests show that the semantic cross entropy loss
is approximately 10x the surface normal cosine loss so we
test loss balancing in Table 3. Again we evaluate the mid
fission strategy using the same architecture and evaluation
described in thie Fission Study in the main paper, with the
auxiliary loss for both surface normals and semantic labels
as described in Section 3. We evaluate with λsemantics =
1 in all cases and λnormals = {1, 5, 10, 15} denoted as λn.
Balancing with other modailties is shown in Table 4 and
Table 5.

Unsurprisingly, when initializing with labels, increasing
the λn of the cosine loss for surface normals results in better
surface normals but makes the semantic prediction under-
perform single-task prediction. However, when initializing
with normals, semantic accuracy continues to outperform
single task prediction (though decreasing slightly as λn in-
creases), whereas surface normal prediction starts to outper-
form single task prediction. Note that at λn = 15, surface
normal prediction remains the same but semantic labeling
metrics decrease. Therefore, the choice of λn = 10 is val-
idated here with greater than 4% more pixels being under
11.25 degrees error and almost 2% more mIoU compared
to the single-task predictions.

Method Normals % < Depth % <

11.25 22.5 30 1.25 1.252 1.253

Baseline
Normals 83 91.5 93.8 - - -
Depth - - - 86.1 95.3 97.5

No Loss Balance
Early 79.2 91.2 93 82.9 91.9 94.2
E-Mid 78.8 89.9 92.9 82.0 89.5 91.8
Mid 80.1 92 93.3 80.9 89.9 92.4
Late 76.6 89.2 92.4 81.6 89.1 91.4

λn = 10, λd = 1

Early 83.6 92.2 94.5 81.1 91.5 94.3
E-Mid 85.5 92.9 94.9 83.5 92.5 94.7
Mid 85.5 93.1 95.1 81.8 90.9 93.2
Late 85 92.6 94.8 82.5 90.1 92.2

Table 4: Joint Normals and Depth results with different fission
methods both with no loss balancing and when the loss is balanced
(λnormals = 10 and λdepth = 1). For this ablation, auxiliary
loses are used (α1 = 0.6, α2 = 0.5 for both tasks).

In Table 4, we show results for early, early-mid, mid, and
late fission for a model trained jointly on surface normals

and depth showing the impact of loss balancing. For early-
mid and mid fission, we fine-tune from normals, otherwise
we train from scratch as that doesn’t help for early/late fis-
sion. Surface normal prediction for early, late, and mid
fission improve when using loss balancing, which makes
sense given the depth loss is approximately 20x the nor-
mals loss. Interestingly enough, depth gets slightly better
for both late and mid fission even though the depth loss has
a lower overall impact on the total loss. This verifies the im-
portance of loss balancing for mid fission regardless of the
tasks learned. Note that early-mid and mid fission generally
perform the best here.

Initialization Depth % < Semantics

1.25 1.252 1.253 mIoU

Baseline
Depth 86.1 95.3 97.5 -
Semantics - - - 50.3

No Loss Balance
Early 39.2 64.8 79.1 48.5
E-Mid 73.7 90.7 95.2 50.0
Mid 80.1 93.1 96.5 49.2
Late 84.7 95.2 97.5 48.6

λs = 2, λd = 1

Early 66 86.8 93.3 50.2
E-Mid 81.7 94.1 97.1 51.2
Mid 82.8 94.7 97.3 51.0
Late 82.3 94.6 97.2 48.7

Table 5: Joint Depth and semantic label results with different fis-
sion methods with no loss balancing and when the loss is balanced
(λsemantics = 2 and λdepth = 1). For this ablation, auxiliary
loses are used (α1 = 0.6, α2 = 0.5 for both tasks).

In Table 5, we show results for early, early-mid, mid, and
late fission for a model trained jointly on semantic labels
and depth showing the impact of loss balancing. For early-
mid and mid fission, we fine-tune from normals, otherwise
we again train from scratch as we find that didn’t help for
early/late fission just as shown in the main paper. Semantic
label prediction for all fission methods improve when us-
ing loss balancing, which makes sense given the depth loss
is approximately 2x the semantic labels cross-entropy loss.
Depth gets slightly better for both early, early-mid, and mid
fission. This again shows the importance of loss balancing
for mid fission regardless of the tasks learned. Mid fission
is always improved by balancing the losses. Early fission
has very bad results for depth with these joint tasks. Our
hypothesis is that there are not many good task-shared fea-



tures between depth and semantic labels in the bottleneck
generated by the encoder. Note that early-mid and mid fis-
sion generally perform the best here.

Balancing with all 3 modalities is shown in the main pa-
per but here we consider only surface normals and semantic
labels as in the previous sections. Unsurprisingly, when ini-
tializing with labels, increasing the λn of the cosine loss
for surface normals results in better surface normals but
makes the semantic prediction under-perform single-task
prediction. However, when initializing with normals, se-
mantic accuracy continues to outperform single task predic-
tion (though decreasing slightly as λn increases), whereas
surface normal prediction starts to outperform single task
prediction. Note that at λn = 15, surface normal prediction
remains the same but semantic labeling metrics decrease.
Therefore, the choice of λn = 10 is validated here with
greater than 4% more pixels being under 11.25 degrees er-
ror and almost 2% more mIoU compared to the single-task
predictions.

5. Initialization Study

Initialization Normals % < Depth % <

11.25 22.5 30 1.25 1.252 1.253

Scratch 66.4 86.2 90.7 80.8 89.4 92
Normals 85.5 93.1 95.1 81.8 90.9 94.1
Depth 74.5 88.4 91.9 83.9 91.9 94.1

Table 6: Joint Normals and Depth results using mid fission with
loss balancing (λnormals = 10 and λdepth = 1). Here we
compare when trained from 3 different initializations: Scratch
being ImageNet fine-tuning, Normals being initialized with the
network trained on normals, Depth being initialized with the net-
work trained on depth. For this ablation, auxiliary loses are used
(α1 = 0.6, α2 = 0.5 for both tasks).

In Table 6, we show results for mid fission for a model
trained jointly on surface normals and depth with different
initializations. We initialize in three different ways: from
scratch, from the normals network, and from the depth net-
work. Note that for mid fission, as expected, initializing
from normals improves normals substantially and improves
depth some, while initializing from depth improves depth
some and improves normals some. Given this, initializing
from normals still seems to be the better method. However,
it is not as clear cut as the joint tasks of surface normals
and semantic labels. In that case, both tasks are the highest
when initialized with normals. Our hypothesis is that sur-
face normals are a better initialization method for the tasks
in our multi-task model.

Initialization Depth % < Semantics

1.25 1.252 1.253 mIoU

Scratch 33.5 60.8 76.7 50.4
Labels 40.8 65.2 80.1 50.9
Depth 77.2 91.4 95.5 43.1
Normals 82.8 94.7 97.3 50.4

Table 7: Joint Semantics and Depth results using mid fission with
loss balancing (λsemantics = 2 and λdepth = 1). Here we
compare when trained from 3 different initializations: Scratch
being ImageNet fine-tuning, Normals being initialized with the
network trained on normals, Depth being initialized with the net-
work trained on depth. For this ablation, auxiliary loses are used
(α1 = 0.6, α2 = 0.5 for both tasks).

In Table 7, we show results for mid fission for a model
trained jointly on semantic labels and depth with different
initializations. We initialize in three different ways just
as in Table 6. Note that for mid fission, as expected, ini-
tializing from labels improves labels slightly and improves
depth some, while initializing from depth improves depth
substantially but semantics drastically decreases accuracy.
This again gives credence to our hypothesis that there are
not as many task-shared features between depth and seman-
tic labels. Interestingly enough, initializing from normals
improves metrics for both even though it isn’t a predicted
task here. This confirms that initializing the network by
training a method on surface normals creates good features
for several related tasks. Given normals were seen as a very
good task for transfer learning in Taskonomy [9], this makes
some amount of sense.

5.1. Variability Ablation Study

Method Normals Semantics

% < 11.25 % < 11.25 % < 30 MAE mIoU

Run 1 86.6 93.4 95.3 7 51.2
Run 2 86.6 93.5 95.3 7 51.4
Run 3 86.6 93.4 95.3 7 51.3
Range (+/-) 0.05 0.07 0.05 0.02 0.1

Table 8: 3 Different training runs of our mid-fission network on
normals and semantics with normal initialization and balanced
losses.

As shown in Table 8, we find our metrics only shift +/-0.1
at most verifying these results are meaningful and not just
noise. We did this on the ablation study on Scenenet using
the server model with the same experimental methodology



used to create Table 1 in the main paper.
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