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1. Keypoint Modification
Figure 1 shows more examples of keypoint modifications

with CharacterGAN. Figure 2 and Figure 3 show images
generated based on linearly interpolated keypoint positions
between a start and end-frame, generated by our model, Sin-
GAN [4], ConSinGAN [1], and DeepSIM [6].

2. Mask Connectivity
Figure 4 shows how the final image quality can be im-

proved by ensuring that the generated mask is connected.

3. Discrete States
Figure 5 shows how CharacterGAN switches between

discrete states based on keypoint locations.

4. Data and Reconstructions
Figure 6 and Figure 7 show the reconstructions of our

CharacterGAN and its ablations for all training images we
used for the quantitative evaluation. Figure 8, Figure 9, and
Figure 10 show the reconstructions of all baseline models
for all training images we used for the quantitative evalua-
tion.

5. Implementation Details
Our model is based on pix2pixHD architecture [7], with

32 convolutional filters in the first layer of the generator and
64 convolutional filters in the first layer of the discrimina-
tor. We train our models on images of resolution 250× 250
pixels. Our batch size is 5 and we train for 16,000 itera-
tions, which takes about 40 minutes on an NVIDIA RTX
2080Ti. We use the Adam optimizer [2] and a learning rate
of 0.0002 (beta1 = 0.5) for the generator and discrimina-
tor which we linearly reduce during the last 8,000 iterations.
We use instance norm [5] in both the discriminator and gen-
erator. The generator uses rectified linear units (ReLU) as
non-linearity, while the discriminator uses leaky ReLU with
a negative slope of 0.2.

Our generator takes as input the conditioning informa-
tion (250 × 250 pixels) and applies several convolutional
layers with stride 2 until we reach a resolution of 16 × 16
with 1, 024 channels. We then apply nine residual blocks,
each with 512 filters to this, before using transposed convo-
lutional layers to upsample the data to the original resolu-
tion of 250 × 250 pixels. Our adaptive normalization tech-
nique is similar to SPADE [3], however, we use different
conditioning layers for each of the keypoint layers. We use
two patch discriminators, one operating on the original in-
put (250×250 pixels) and one operating on a downsampled
version of the input (125×125 pixels). Both discriminators
consist of five convolutional layers, of which the first three
have a stride of two and the final two a stride of one.
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Original Generated Original Generated Original Generated Original Generated

Figure 1: Examples from our model which was trained on only 8 – 12 images for each of the characters. Even columns show
the original image and our intended modifications, odd columns show the output of our model.
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Figure 2: We show interpolated frames generated by our baselines and CharacterGAN between a single start and end frame
(left and right columns) whose keypoint layouts are contained in the train set. All intermediate image are generated from
linear interpolations of the start and end keypoint layouts and are not contained in the train set. For better comparison with
the baselines we do not use the patch-based refinement step on our model for these visualization.
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Figure 3: We show interpolated frames generated by our baselines and CharacterGAN between a single start and end frame
(left and right columns) whose keypoint layouts are contained in the train set. All intermediate image are generated from
linear interpolations of the start and end keypoint layouts and are not contained in the train set. For better comparison with
the baselines we do not use the patch-based refinement step on our model for these visualization.
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Figure 4: Enforcing mask connectivity at test time results in more realistic images.



Original Interpolations

Figure 5: Discrete states based on keypoint location. The first column shows the original image and intended modifications.
The rest of the columns show the generated images, based on linear keypoint interpolations between the start image and the
final keypoints locations based on the intended modifications.
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Figure 6: Qualitative examples of reconstructing held-out test images based on their keypoint locations.
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Figure 7: Qualitative examples of reconstructing held-out test images based on their keypoint locations.
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Figure 8: Qualitative examples of reconstructing held-out test images based on their keypoint locations.
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Figure 9: Qualitative examples of reconstructing held-out test images based on their keypoint locations.
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Figure 10: Qualitative examples of reconstructing held-out test images based on their keypoint locations.


