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1. Technical details
1.1. Network Architectures

1.1.1 G1

G1 includes two main components: encoder and decoder.
In that, each consists of 4 RECA U-Blocks. The recon-
structed image Ŷ is inferred from the scanned photo X

through G1 as (according to the inference flow): Convo-
lutional Layer (Conv2D+EvoNorm [11]) −→ RECA Block
−→ Encoder −→ Residual Blocks (ResBlocks) −→ De-
coder −→ Convolutional Layer −→ Conv2D + Tanh. Each
encoder and decoder contains 3 residual layers (ResBlock),
and each ResBlock consists of 2 convolutional layers. The
first Conv2D uses the kernel size of 5, padding of 3, and a
stride of 1; meanwhile, all other Conv2D modules use the
kernel size of 3, padding of 1, and a stride of 1. The chan-
nel sizes in inference order are set as: [3, 32, 32] for the first
two layers, [64, 128, 256, 512] for 4 RECA U-Blocks of the
encoder, [512, 512, 512] for 3 ResBlocks, [256, 128, 64, 32]
for RECA U-Blocks in the decoder, and [32, 3] for two last
layers, where the final channel size of 3 represents of the
restored image Y , which values are in a range of [−1, 1].

1.1.2 G2

The network architecture and inference flow for G2 are sim-
ilar to G1. However, it does not have the RECA Block. Be-
sides, the RECA U-Blocks are replaced by pure convolu-
tional layers. The channel sizes and skip-connections trans-
ferring feature maps from the encoder part to the decoder
part are described in Figures 1 and 2.

1.2. Implementation

We train our models using Adam optimizer [9] with a
learning rate of 0.0001 for generators, 0.0004 for the dis-
criminator, β1 = 0.9, β2 = 0.999, the batch size of 8
for pre-training and 4 for fine-tuning. Our models are pre-
trained and fine-tuned in 200, 000 iterations.

2. Discussion
2.1. Failed to detect a complete contour

The scanned photo’s contour needs to be identified be-
fore perspective warp transforming a smartphone-scanned
photo to have a top-down view. The traditional edge de-
tection techniques [1, 8] achieve real-time performance in
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Figure 1. The baseline network architecture for the generators of DPScan as well as for G2 inferring the smartphone-scanned X̂ from the
high-quality Y .
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Figure 2. Illustration of Conv U-Block in encoder and decoder
parts. Green block denotes Conv2D + EvoNorm [11]. Regarding
”DOWN”-sampling and ”UP”-sampling, we use the anti-aliasing
max pooling and bi-linear interpolation from [19].

⊕
represents

a summation.

Method Valset Testset
Flow-Warping Block (FWB) 21.89 22.03
Residual Feature-based Attention (RFA) 21.79 22.03
Residual Self-Attention (RSA) 21.86 22.12
Residual Channel Attention Block (RCAB) 21.83 22.19
Residual Efficient Channel Attention (RECA) 22.14 22.46

Table 1. Ablation study on deep modules, such as Flow-Warping
Block (FWB) [5], Residual Feature-based Attention (RFA), Resid-
ual Self-Attention (RSA) [18], Residual Channel Attention Block
(RCAB) [21], and Residual Efficient Channel Attention (RECA)
[17]. We one-by-one add the ablation modules after the first layer
of the baseline architecture for DPScan (similar to the architec-
ture of G2 shown in Figure 1) and train all ablation models in the
same condition. The customized RECA shows the best restoration
performance in PSNR (higher is better) as bold values.

identifying the contour of interests; however, they still
suffer from the homologous colors between the bound-
ary leading to an incomplete contour, as shown in Figure
4. DNN-based edge detection [13] can achieve much bet-
ter performance. However, it requires a longer processing
time. Taking advantage of the methods as mentioned ear-
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Figure 3. Illustrations of ablation modules such as Flow-Warping
Block (FWB) and Residual Feature-based Attention (RFA). FWB
is designed to solve the structural mismatch at the beginning.

lier, we combine [1] (with opening morphing noise reduc-
tion) and DNN-based [13] techniques for our contour de-
tection, which can significantly reduce the processing time
with high performance. We manually correct failed cases by
drawing additional lines or providing a new contour when
both methods are failed in detecting a complete contour, as
shown in Figure 4.

2.2. Unstable performance of GAN-based frame-
work in training

Generative Adversarial Network (GAN) and its variants
have achieved high performance in image synthesis; how-



Figure 4. Detecting contours of interests using Canny edge detection [1] with opening morphing noise reduction (second column) and
DexiNed [13] (third column). We manually annotate the contours when both methods are failed (last column). Highlighted rectangles
reveal the failure in detecting a complete contour.

Figure 5. Mean Square Errors of G1 in training and the restoration performance (PSNR) in validation when G1, G2, and D2 are trained
together. The training error sometimes becomes dramatically worse. Eventually, the restoration performance of G1 is still improved.

ever, they often generate unreal textures such as in Pix2Pix
[6]’s restored images as well as our pseudo inputs, as shown
in Figure 6. Consequently, the performance of our semi-
supervised DPScan is unstable while training on them, as
shown in Figure 5. We also visualize in Figure 6 the re-
stored images being dramatically worse during the epoch
499 to 506, which is described in Figure 5. Even so, the
restoration performance of our DPScan is still significantly

improved using the proposed semi-supervised approach,
providing fewer artifacts with fine edges than its supervised
pre-trained model.



Figure 6. GAN-based network occasionally generates abnormal textures, as described in (a) the pseudo inputs of our G2 while being trained
with G1 and (b) restored images of the re-trained Pix2Pix [6]. Addressing this issue can lead to further improvement. Also, we show the
restored images of G1 during epochs 499 to 506, visualizing the unstable performance of the GAN-based framework while training.

3. Experiments

3.1. Deep modules for network architecture

We adopt U-Net [14], residual modules [4, 7], anti-
aliasing down-/up-samplers [19], EvoNorm [11] to design
a base architecture for DPScan, as shown in Figure 1 and 2.
While considering improving network architecture, we con-
duct an ablation study on customized deep learning tech-
niques such as Flow-Warping Block (FWB) [5], Resid-
ual Feature-based Attention (RFA), Residual Self-Attention
(RSA) [18], Residual Channel Attention Block (RCAB)
[21], and Residual Efficient Channel Attention (RECA)
[17]. In that, FWB is designed to correct structural mis-
alignment at the beginning of the network, while RFA ex-
tracts the attention based on the whole feature map us-
ing a Sigmoid function, as shown in Figure 3. Besides,
RSA has down-/up-sampling pooling placed between Self-
Attention [18] to reduce the computational cost. We one-
by-one add the ablation modules after the first layer of the
baseline architecture and train them in the same condition.
As a result, the customized RECA outperforms other abla-
tion techniques with the best PSNR as 22.14 and 22.46 on
valset and testset, respectively, with the first center crop ra-
tio R1 = 75% (no further processing), as shown in Table
1.

Figure 7. Ablation study on training data including aligned and
unaligned DIV2K-SCAN. We compare two models (baseline DP-
Scan), which are trained on unaligned/aligned images in 500
epochs, on both (a) unaligned and (b) aligned testset qualitatively
and quantitatively in PSNR ↑ /LPIPS ↓ /MS-SSIM ↑. Bold values
show the best performance corresponding to the metric for (a) on
DIV2K-SCAN testset. Although the model trained on unaligned
images has a better performance in correcting distorted shapes as
higher PSNR, the details are not restored well compared with the
model trained on aligned images. Therefore, the pose in input and
ground-truth images must be the same.



3.2. How important image alignment is for learning
capability and evaluation

As mentioned about data preparation in the main pa-
per, we avoid learning structural correction due to misalign-
ment remaining in data using traditional image alignment
[12, 2, 15], so that our DPScan can be trained effectively
to solve the real-world degradation. In this ablation study,
we train a baseline architecture of DPScan on aligned and
unaligned DIV2K-SCAN in the same condition. As a re-
sult, although the model trained on unaligned images quan-
titatively outperforms the model trained on aligned images
on the unaligned testset (a), it generates highly distorted
results. In contrast, the model trained on aligned images
can provide much better restoration performance with finer
edges. It says, due to the misalignment in data, 1) similarity
metrics are falsified, and 2) learning capability is harmed as
the model trained on unaligned images also tries to correct
the pose, leading to significantly distorted images, as eval-
uated in Figure 7. Even though the misalignment is signif-
icantly reduced after applying image alignment with SIFT
and RANSAC, the local misalignment still occurs. We thus
present Local Alignment (LA) to reduce the remaining mis-
alignment. A quantitative result of locally-aligned scanned
photos (inputs) in Figure 10 shows that the image quality of
the inputs is gradually reduced in the ascending order of im-
age size. That is to say, the larger the image size, the more
serious the misalignment, the lower the restoration perfor-
mance, the less reliable the evaluation using similarity met-
rics. We thus train our network on locally-aligned images
cropped to 256× 256 and evaluate all methods on three im-
age sizes 176× 176, 256× 256, and 384× 384.

3.3. An illustration of pseudo-scanned photos

We visualize our pseudo-scanned photos in iPhone XR
and generalized domains in Figure 8. Generating pseudo-
scanned photos for unscanned images helps diversify our
training image content, leading to better restoration perfor-
mance, as proved in the main paper.

3.4. A comparison of performance on mimicking
the smartphone-scanned photo degradation

The purpose of mimicking the degradation of
smartphone-scanned photos is to provide pseudo in-
puts for an unlimited amount of high-quality images so
that our network can be trained on them, representing a
semi-supervised learning approach. In this work, we adopt
the concept of GANs [3, 18, 6] to train our degradation
network G2 to degrade the unscanned photos as if a
smartphone scanned them. As a result, our work provides
the pseudo-scanned photos closer to the real-scanned
photos than CycleGAN [22] trained in the same condition.
Quantitatively, our G2 obtains a higher PSNR of 24.8 dB,

higher MS-SSIM of 0.9364, approximate LPIPS of 0.1542
on testset, as shown in Figure 9.

3.5. Ablation study on the number of simulated
domains for fine-tuning the pre-trained 1-
domain DPScan

This section conducts an ablation study on how the
number of simulated domains (K) affects our general-
ization performance in fine-tuning 1D-DPScan pre-trained
on iPhone XR. As a result, the Generalized DPScan
(G-DPScan) gains much better generalization in the first
100, 000 iterations when K = 75. Since DPScan may need
more iterations to generalize so many photos from 100 do-
mains, we continue fine-tuning the model with K = 75 and
K = 100 more 100, 000 iterations. As a result, G-DPScan
with K = 100 can gain the highest generalization per-
formance; meanwhile, the performance of G-DPScan with
K = 75 is saturated, as shown in Figure 2.

3.6. A quantitative comparison with previous works
on 1-domain DIV2K-SCAN

We show a comprehensive version of the quantitative
comparison between ablation models and the previous work
Pix2Pix [6] and CycleGAN [22] presented in our main pa-
per using PSNR, LPIPS [20], and MS-SSIM on the image
sizes of 176× 176, 256× 256, 384× 384, 576× 576, and
1072 × 720 in Figure 10. The previous works and all abla-
tion models are trained and evaluated on 1-domain DIV2K-
SCAN (iPhone XR). As a result, the final version of our
DPScan trained on only iPhone XR (1D-DPScan) outper-
forms its baseline architecture, typical works [6, 22] trained
in the same condition.

3.7. A quantitative comparison of generalization
performance with previous works and indus-
trial products on multiple-domain DIV2K-
SCAN

We show a comprehensive version of the quantitative
comparison of generalization performance presented in our
main paper using PSNR, LPIPS [20], and MS-SSIM on the
image sizes of 176×176, 256×256, 384×384, 576×576,
and 1072 × 720 in Figure 11. Even though our perfor-
mance is reduced after generalizing our 1D-DPScan (DP-
Scan trained on iPhone XR only) on iPhone XR, General-
ized DPScan (G-DPScan) significantly outperforms its 1-
domain version on other unseen domains, previous research
work OPR [16] and industrial products Google Photo Scan
and Genius Scan entirely.

3.8. A qualitative comparison between 1-domain
and multiple-domain (generalized) works

We show a full version of the qualitative comparison on
iPhone XR in Figure 12, and the additional comparisons



Figure 8. Our pseudo-scanned photos in iPhone XR and generalized domains from 1D-DPScan and G-DPScan, respectively. Generating
pseudo-scanned photos for unscanned photos helps diversify our training image content, leading to better restoration performance.

Method #Styles iPhone XR (seen) iPhone XR + SCB (unseen) Xperia XZ1 (unseen) Average
PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑

1D-DPScan 0 25.26 0.1242 0.9446 20.80 0.1883 0.9172 21.65 0.2357 0.8972 22.57 0.1827 0.9197

G-DPScan

25 24.55 0.1389 0.9387 22.22 0.1709 0.9268 22.27 0.2178 0.9042 23.02 0.1759 0.9232
50 24.35 0.1399 0.9376 22.63 0.1684 0.9273 22.09 0.2265 0.8993 23.02 0.1783 0.9214
75 24.40 0.1417 0.9386 22.71 0.1670 0.9252 22.25 0.2252 0.9030 23.12 0.1780 0.9223
100 24.30 0.1408 0.9378 22.68 0.1703 0.9258 21.95 0.2234 0.9011 22.98 0.1782 0.9216
75* 24.21 0.1439 0.9374 22.97 0.1602 0.9276 22.11 0.2158 0.9001 23.10 0.1733 0.9217

100* 24.10 0.1413 0.9363 22.93 0.1610 0.9276 22.48 0.2134 0.9045 23.17 0.1719 0.9228
Table 2. Ablation study on the number of simulated domains (K) for fine-tuning 1D-DPSCan pre-trained on iPhone XR, where K ∈
{25, 50, 75, 100}, in 100, 000 iterations. * means we continue fine-tuning the models more 100, 000 iterations. By fine-tuning more
iterations, 1D-DPScan with K = 100 can gain the better generalization performance as bold (best)/ underline (second best) values;
meanwhile, the performance of 1D-DPScan with K = 75 is saturated. ↑/↓: higher/lower is better.

with the industrial products Google Photo Scan, Genius
Scan, the previous work Old Photo Restoration [16], two
re-trained Pix2Pix [6], CycleGAN [22] in Figures 15 and
16.

Besides, we provide a full version of qualitative com-
parison of generalization performance on many different
domains including iPhone XR, Simplest-Color-Balanced
[10] DIV2K-SCAN (iPhone XR+SCB) and photos taken by
Xperia XZ1, as shown in Figures 12, 13, and 14 respec-
tively.
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Figure 10. A comprehensive version of the quantitative comparison presented in our main paper using PSNR, LPIPS [20], and MS-SSIM
on the image sizes of 176× 176, 256× 256, 384× 384, 576× 576, and 1072× 720. The reduction of image quality in ascending order
of image size reveals the local misalignment remaining in data. The final version of our DPScan outperforms its baseline architecture,
previous research works. All models are trained and evaluated on 1-domain DIV2K (iPhone XR).



Figure 11. An extended version of the quantitative comparison presented in our main paper using PSNR, LPIPS [20], and MS-SSIM on the
image size from 176 × 176 to 1072 × 720. Even though the performance is reduced after generalizing 1D-DPScan (DPScan trained on
iPhone XR only) on iPhone XR, Generalized DPScan (G-DPScan) significantly outperforms its 1-domain version on other unseen domains,
previous research work OPR [16] and industrial products Google Photo Scan and Genius Scan in total.



Figure 12. A full version of qualitative comparison shown in the main paper between two typical works Pix2Pix [6], CycleGAN [22]
trained on 1-domain DIV2K-SCAN (iPhone XR), two industrial products Google Photo Scan (GPS), Genius Scan (GS), the previous work
Old Photo Restoration (OPR) [16], and our 1-domain DPScan, Generalized DPScan (G-DPScan). Ours produces the most detailed photos
without glare and color fading. Better when zoomed in.



Figure 13. Qualitative comparison in case of out-of-distribution between our work, Old Photo Restoration (OPR) [16], Pix2Pix [6], Cycle-
GAN [22] on Simplest-Color-Balanced (SCB) [10] DIV2K-SCAN.



Figure 14. Qualitative comparison in case of out-of-distribution between our work, Old Photo Restoration (OPR) [16], Pix2Pix [6], Cycle-
GAN [22] on testset taken by Xperia XZ1.



Figure 15. Additional comparison 1.



Figure 16. Additional comparison 2.


