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Different saliency predictor designs. In our method, the
channel saliency predictor consists of two full-connected
layers with ReLU in-between and Sigmoid at the output.
This MLP-based predictor takes as input the feature-maps
statistics computed by SI operator, and outputs the impor-
tance scores. For comparison, we introduce a CNN-based
predictor, consisting of one 3 × 3 stride-2 convolution fol-
lowed by global average pooling and one fully connected
layer. The use of convolution in the predictor serves to re-
place the role of SI by learning to extract the feature-maps
statistics. Moreover, we introduce a recurrent neural net-
work (RNN) based predictor to enable parameter sharing
and reuse of feature-maps information from previous layers.
The RNN-based predictor consists of a global average pool-
ing, a single layer LSTM [4], and one fully-connected layer.
As shown in Table 1, the MLP-based predictor achieves the
highest PSNR. The CNN predictor adds much more param-
eters and is prone to over-fitting, while the weight-sharing
in RNN predictor neglects different impacts from different
layers to the final reconstruction performance.

Table 1: Comparison of different saliency predictor designs, in-
cluding recurrent (RNN) based, convolution (CNN) based, and the
default multi-layer perceptrons (MLP). PSNR are evaluated with
EDSR-baseline after 50% FLOPs reduction for x4 SISR.

Predictor Set5 Set14 B100 Urban100

CNN 32.20 28.56 27.54 25.93
RNN 32.13 28.55 27.53 25.87

MLP (default) 32.25 28.63 27.59 26.04

Effect of two-stage training. In Table 2, we compare the
PSNR of models obtained by our two-stage training schema
versus training from scratch. Our two-stage training schema
involves (1) pre-training stage that trains the plain SR net-
work from scratch without routers and channel saliency pre-
dictors (2) searching stage that trains the pre-trained SR net-
work together with routers and predictors using joint SR
loss and sparsity loss for learning input-dependent com-
pression policies. For scratch training, we train with dou-
bled epoch numbers to match the total training steps of the
two-stage training. As observed, two-stage training yields
higher PSNR over four benchmarks. This suggests that su-
pervised pre-training can provide a more effective initial-
ization which facilitates the searching stage to excavate the
model redundancy with negligible PSNR loss.

More comparisons with SOTA efficient SR. In Table
2 of main paper, we compared our extremely compressed
models (Ours-L,M,S) with SOTA super-efficient SR meth-
ods (less than 10G FLOPs). Here in Table 3, we addi-
tionally compare our moderately compressed models with

Table 2: Effect of our two-stage training schema. PSNR are evalu-
ated with EDSR-baseline after 50% FLOPs reduction for x4 SISR.

Training strategy Set5 Set14 B100 Urban100

Scratch 32.04 28.48 27.50 25.83
Two-stage (default) 32.25 28.63 27.59 26.04

more lightweight SR methods for x4 SISR. We compress
EDSR-baseline (114 GFLOPs) to obtain efficient SR mod-
els (Ours-XL) with 40 and 30 GFLOPs for comparison with
other leading methods. As shown, our compressed mod-
els achieve competitive PSNR while with similar or fewer
FLOPs.

Table 3: Quantitative comparison with SOTA efficient SR meth-
ods. FLOPs are calculated as the number of multiply-adds needed
to convert an image to 720p (1280× 720) resolution. Best results
are highlighted as Red.

Method FLOPs Set5 Set14 B100 Urban100

SRCNN [2] 52.7G 30.48 27.49 26.90 24.52
VDSR [6] 612.6G 31.35 28.01 27.29 25.18

LapSRN [7] 149.4G 31.54 28.19 27.32 25.21
DRRN [9] 6,796.9G 31.68 28.21 27.38 25.44
BTSRN [3] 165.2G 31.85 28.20 27.47 25.74

MemNet [10] 2,662.4G 31.74 28.26 27.40 25.50
SRResNet [8] 146.1G 32.05 28.49 27.58 25.90
CARN-M [1] 32.5G 31.92 28.42 27.44 25.62
CBPN-S [12] 63.1G 31.93 28.50 27.50 25.85

IMDN [5] 40.9G 32.21 28.58 27.56 26.04
PAN [11] 28.2G 32.13 28.61 27.59 26.11

Ours-XL 40G 32.21 28.62 27.60 26.11
30G 32.17 28.61 27.59 26.07

Realistic accelerations of compressed models. The re-
alistic accelerations of compressed SR models (in Table 1
of main paper) on DIV2K validation set are shown in Ta-
ble 4, which is calculated by counting the average inference
time for processing each image on CPU. The realistic ac-
celeration is slightly less than the theoretical acceleration
calculated by FLOPs reduction, which is due to practical
factors such as I/O operations (e.g., accessing weights of
networks), BLAS libraries and buffer switch, whose impact
may be reduced by future engineering optimizations.

Table 4: Realistic speedup (inference run-time reduction) and the-
oretical speedup (FLOPs reduction) of compressed SR models on
DIV2K validation.

Model Theoretical Realistic
speedup speedup

EDSR-baseline 50% 38%

CARN 50% 35%

RDN 47% 32%
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Figure 1: More visual comparisons with SOTA efficient SR methods for x4 SISR. Our compressed models demonstrate better image quality
while requiring similar or fewer FLOPs than other manually designed or NAS-based methods.

More qualitative results. Fig.1 provides more qualitative
comparisons with the state-of-the-art efficient SR methods.
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