
6. Supplementary of Semi-Supervised Seman-
tic Segmentation of Vessel Images using
Leaking Perturbations

6.1. Algorithm summary of the proposed model

Our model is summarized in Algo. 1. Furthermore, Leak-
GAN can be used for the cross-domain scenarios, which the
unlabelled target Xt

ul also is fed into the model, as shown in
Algo. 2.

Algorithm 1: Training of the LeakGAN
Input: Source: Xs

l , y
s
l ,X

s
ul

Result: Segmentation classifier (discriminator)
1 θD,θG,θMT ← initialization
2 for iterations of traning do
3 Xs

l , y
s
l ,X

s
ul ← sample mini-batch

4 z← sample from N (0, I)

5 Generate X̃f by feeding z through generator G
6 Lsup,Lunsup,Lcons-FL,Ladv- ← calculated by

Eq. (2), Eq. (3), Eq. (13) and Eq. (15)
7 for iterations of inference model updating do
8 θD ← – ∆θD

L∗

9 end
10 for iterations of discriminator updating do
11 θG← –∆θGLadv-
12 end
13 end

Algorithm 2: Training of the cross-domain Leak-
GAN

Input: Source: Xs
l , y

s
l ,X

s
ul, Target:Xt

ul
Result: Segmentation classifier (discriminator)

1 θD,θG,θMT ← initialization
2 for iterations of traning do
3 Xs

l , y
s
l ,X

s
ul,X

t
ul ← sample mini-batch

4 z← sample from N (0, I)

5 Generate X̃f by feeding z through generator G
6 Lsup,Lunsup,Lcons-FL,Ladv- ← calculated by

Eq. (2), Eq. (3), Eq. (13) and Eq. (15)
7 for iterations of inference model updating do
8 θD ← – ∆θD

L∗

9 end
10 for iterations of discriminator updating do
11 θG← –∆θGLadv-
12 end
13 end

6.2. Implementation

Our experiments are based on implementations using
TensorFlow [1]. Our model is trained by the patches ran-
domly cropped from the training images. The patch size is
64 × 64. The structure of the generator is similar to that
of DCGAN [31], which performs well on image generation
tasks. A 1-D random normal noise with length 100 is fed
to the generator. It passes through a fully connected layer,
and the activation is reshaped to 8 × 8. There are overall
six convolution layers following the fully-connected layer.
LeakyReLU is used as the activation function except for the
last layer, where tanh() is used instead. Transposed convo-
lution layers with stride 2 are utilized for the upsampling.
Batch normalization is added between the convolutional lay-
ers. The intermediate outputs of the generator, which have
the same frame size as the discriminator’s, are used as the
leaked information. The discriminator is of U-Net style and
has a structure similar to the model proposed in [28]. The
kernel of the consecutive convolution layers is 3×3, and
max-pooling with step 2 is utilized to downsample the im-
age patches. After four stacked blocks of convolution and
downsampling layers, the patches are encoded to the size of
4×4×512. The decoder of the discriminator has a structure
symmetric to the encoder. The encoder’s output, also the
intermediate outputs of the generator, are concatenated to the
decoder for the further upsampling. During the experiments,
the output of the first convolutional layer of the generator
(features with size 8×8) is utilized for the leaking module.
It spends around 1.69s, 1.72s, and 4.70s to generate each
image prediction in patch-level for DRIVE, STARE, and
CHASE_DB1, respectively, when our model is run on a
single NVIDIA GTX1080 GPU.

6.3. Qualitative results for STARE and
CHASE_DB1

In this section, more visualization of the experiments on
STARE and CHASE_DB1 are demonstrated.

The whole-image prediction of the STARE and
CHASE_DB1 are shown in Fig. 6.

Also, in the sixth column of Fig. 7a, the vessels of STARE
are detected well though it has some blue pixels around
them. However, some vessels’ structures disappear (as false
negative) in the predictions, e.g. as shown in the fourth
column of Fig. 7b.

6.4. More scenarios of cross-domain evaluations

We extend the cross-domain segmentation evaluation onto
another scenario: training the LeakGAN framework on the
healthy images and testing it on the pathological images. For
the DRIVE dataset, there are seven images from diabetic
patients. We also evaluate the performance for the health
retina images as training images, the diabetic patient’s retina
images for the test. The results are given in Table 7, and



Test Images Ground Truth Prediction/3 Prediction/5Difference/3 Difference/5 Prediction/8 Difference/8

(a) STARE
Test Images Ground Truth Prediction/3 Prediction/5Difference/3 Difference/5 Prediction/8 Difference/8

(b) CHASE_DB1

Figure 6: Visualization of the semantic segmentation on testing images. The first two columns are test images and their ground
truth. Then the results are shown when 3, 5 and 8 labelled training images are used. Its differences to ground truth are shown
next to the prediction columns, with blue pixels being false positive, and yellow being false negative.

(a) Patch segmentation of STARE

(b) Patch segmentation of CHASE_DB1

Figure 7: Patched segmentation results for the scenario of 8 labelled training image using different datasets. The testing
patches and their ground truth are in first and second row respectively. The third row is for the predictions. The difference
between the prediction and ground truth is shown in the last row, blue pixels being false positive, and yellow being false
negative.

segmentation examples are shown in Figure 8a. Also the vi-
sualization of the scenario from STARE to DRIVE is shown
in Fig. 8b. From these results, we can see that the model
performs reasonably in this scenario.

Furthermore, we evaluate our model’s generalization
when it is applied to unseen datasets. During the experiments,
the model is trained following Algorithm 1 on one dataset,

while the testing is done on retina images of another dataset.
For example, these results are obtained: Acc(%)=95.06,
Sp(%)=92.15, and Se(%)=83.37, when the transfer from
DRIVE (training) to STARE (testing) is considered. This
shows that our model also generalizes well to unseen data
resources.



Table 7: Performance for training on DRIVE(H), testing on DRIVE(D). Numbers for the training setup are for labelled and unlabelled
images respectively.

Train Dataset DRIVE(H)(5+5) DRIVE(H)(10+10) DRIVE(H)(10+23)
Test Dataset DRIVE(D) DRIVE(D) DRIVE(D)

Acc(%) 92.15 92.23 93.61
Sp(%) 85.39 85.32 80.52
Se(%) 97.53 95.16 98.30

Test Images Ground Truth Pridiction/8 Difference/8

(a) From DRIVE (Healthy) to DRIVE (Diabetic)
Test Images Ground Truth Prediction/8 Difference/8

(b) From STARE to DRIVE

Figure 8: Visualization of the cross-domain prediction results. The test images and their ground truth are shown in the first two
columns. The predictions are listed on the third. The difference between the prediction and ground-truth is shown in the last
column overlaying on ground-truth, with blue pixels indicating false positive, and yellow indicating false negative.


