
Supplementary material for Busy-Quiet Video Disentangling for Video
Classification

A. More training details

We train our models in 16 or 64 GPUs (NVIDIA Tesla
V100), using Stochastic Gradient Descent (SGD) with mo-
mentum 0.9 and cosine learning rate schedule. In order to
prevent overfitting, we add a dropout layer before the clas-
sification layer of each pathway in the BQN model. Fol-
lowing the experimental settings in [10, 13], the learning
rate and weight decay parameters for the classification lay-
ers are 5 times of the convolutional layers. Meanwhile, we
only apply L2 regularization to the weights in the convolu-
tional and classification layers to avoid overfitting.
Hyperparameters for models based on ResNet. For Ki-
netics400 [3], the initial learning rate, batch size, total
epochs, weight decay and dropout ratio are set to 0.08, 512
(8 samples per GPU), 100, 2e-4 and 0.5, respectively. For
Something-Something V1 [5], these hyperparameters are
set to 0.12, 256, 50, 8e-4 and 0.8, respectively. We use
linear warm-up [11] for the first 7 epochs to overcome early
optimization difficulty. When fine-tuning the Kinetics mod-
els on UCF101 [12] and HMDB51 [9], we freeze all of
the batch normalization [8] layers except for the first one
to avoid overfitting, following the recipe in [13]. The ini-
tial learning rate, batch size, total epochs, weight decay and
dropout ratio are set to 0.001, 64 (4 samples per GPU), 10,
1e-4 and 0.8, respectively.
Hyperparameters for models based on X3D-M. For Ki-
netics400, the initial learning rate, batch size, total epochs,
weight decay and dropout ratio are set to 0.4, 256 (16
samples per GPU), 256, 5e-5 and 0.5, respectively. For
Something-Something V1, the models trained from scratch
use the followings hyperparameters: learning rate 0.2, batch
size 256, total epochs 100, weight decay 5e-5 and dropout
ratio 0.5. When fine-tuning the Kinetics models, the ini-
tial learning rate, batch size, total epochs, weight decay and
dropout ratio are set to 0.12, 256 (16 samples per GPU), 60,
4e-4 and 0.8, respectively.

B. More Studies for the MBPM settings

We search for the optimal settings of the scale σ and ker-
nel size k × k of MBPM on UCF101. The results are pre-
sented in Figure 1. We observe that the experimental results
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Figure 1: Results on UCF101 when varying the scale σ and
kernel size k× k of the spatial channel-wise convolution in
MBPM.

vary greatly under different settings. Nevertheless, the op-
timal scale is σ = 1.1 when setting the kernel size as 9× 9,
which is the same as that on Something-Something dataset.
Furthermore, we try a larger kernel (11 × 11), but it shows
a performance drop. We speculate that this is caused by
insufficient training.

C. Implementation details of Efficiency and Ef-
fectiveness of the MBPM

These additional explanations are useful for Section 5.2
from the main paper. We provide the implementation details
for the comparative experiments of MBPM with other main-
stream motion representation methods [2, 4, 7, 13, 14, 15].
We follow the experimental settings on PA [15] for fair
comparison. The backbone network for all the methods is
ResNet50 [6]. We use the computer code provided by the
original authors for these methods to generate the network
inputs. For any kind of motion representation, we divide the
representation of a video into 8 segments and randomly se-
lect one frame of the representation for each segment. Fol-
lowing the practices in TSN [13] and PA [15], the output
activations of 8 segments are averaged for the final predic-
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Figure 2: Visualization of the first channels of the 64 conv1 filters of BQN after training on Kinetics400. All the 64 filters
have a size of 7×7. From left to right, in (a), (b) and (c), we respectively present the trained conv1 filters in the Busy pathway,
Quiet pathway and TSM ResNet50. We observe that the kernels of the 64 filters in the Busy pathway have a similar line-like
shape, while those for the filters in the Quiet pathway are more like larger blobs. The conv1 in TSM ResNet50 (baseline)
contains both types of filters from the Busy and Quiet pathways. Best viewed in color and zoomed in.

tion score. In our reimplementation, Dynamic Image [2]
generates one dynamic image for every 6 consecutive RGB
frames, which consumes the same number of RGB frames
as PA [15]. Our MBPM generates one representative frame
for every 3 consecutive RGB frames. As for TVNet [4]
and TV-L1 Flow [14], a one-frame input to the backbone
network is formed by stacking 5 frames of the estimated
flow along the channel dimension, which totally consumes
6 RGB frames. All the models are pretrained on ImageNet.
For Something-Something V1 and Kinetics400, we use the
hyperparameters in Appendix A to train all the models. For
UCF101, we set the initial learning rate, batch size, total
epochs, weight decay and dropout ratio to 0.01, 64 (4 sam-
ples per GPU), 80, 1e-4 and 0.5, respectively.
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Figure 3: Visualization of the spatial channel-wise convolu-
tion LoG1×k×k

σ of MBPM in the Busy pathway before and
after training on Kinetics400. The 9× 9 channel-wise con-
volution is initialized with a Laplacian of Gaussian with the
scale parameter σ = 1.1. Best viewed in color and zoomed
in.
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Figure 4: Comparison between visualizations of different
motion representations on the UCF101. TV-L1 Flow [14]
evaluates the movement in every spatial position, while
TVNet [4], PA [15] and our MBPM capture the outline of
the moving objects. Best viewed in color and zoomed in.

D. Visualization examples

These additional explanations and results are useful for
Section 5.2 from the main paper. In order to visually ob-
serve the difference between our MBPM and other motion
representation method, in Figure 4, we show some example
video frames and their corresponding motion representa-
tions generated by different methods. For a better view, we
use the optical flow visualization approach used in [1] to vi-



sualize the output of MBPM. The optical flow estimates the
instantaneous velocity and direction of movement in every
position (The color represents the direction of movement
while the brightness represents the absolute value of in-
stantaneous velocity in a position). In contrast, TVNet [4],
PA [15] and MBPM are more absorbed in the visual infor-
mation presented in boundary regions where motion hap-
pens. Given that TVNet [4] is based on the optical flow es-
timations, which lose the color information, the information
of different channels is still unknown. Meanwhile, PA [15]
generates the motion representations of a single channel,
which does not preserve the RGB color information. How-
ever, when simply passing the RGB frames to the proposed
MBPM, the color information in these motion boundaries
is still perfectly preserved. Figures 5-6 display the motion
representation extracted by the MBPM for eight different
sequences from various video datasets used for the experi-
ments.

E. Kernel visualization
In Figure 3, we visualize the kernel of the spatial con-

volution LoG1×k×k
σ of MBPM in the Busy pathway. In-

terestingly, before and after training, kernels always present
a similar shape to Mexican hats in 3-dimensional space. In
Figure 2, we visualize the first channel of the 64 filters in the
first layers of the BQN and the baseline (TSM ResNet50).
We can observe that the Busy and Quiet pathways’ filters
have quite distinct shapes in their kernels, suggesting that
the Busy and Quiet pathways learned different types of fea-
tures after training.
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“Playing violin” from UCF101

“Swing baseball” from HMDB51

“Apply eye makeup” from UCF101

“Draw sword” from HMDB51

Figure 5: Examples of video and the corresponding motion representations extracted by MBPM.



“Playing poker” from Kinetics400

“Moving something away from something” from Something-Something V1

“Playing basketball” from Kinetics400

“Holding something next to something” from Something-Something V1

Figure 6: Examples of video and the corresponding motion representations extracted by MBPM.


