
Deep Feature Prior Guided Face Deblurring
Supplementary Material

Soo Hyun Jung1, Tae Bok Lee2, Yong Seok Heo1,2

1Department of Electrical and Computer Engineering, Ajou University, South Korea
2Department of Artificial Intelligence, Ajou University, South Korea

{tngusdldlt,dolphin0104,ysheo}@ajou.ac.kr

Overview

In this supplementary material, we provide implementa-
tion details, extended discussions, and experimental results
which could not be included in the main paper due to page
limitation. First, we describe the details of our DFPGnet
in Section 1. Then, we conduct additional analysis on deep
feature priors used for our DFPGnet in Section 2. Lastly,
we show additional comparisons with state-of-the-art meth-
ods [9, 12, 11, 4] on various test sets in Section 3. Our train-
ing code, model weights and result images will be released
to facilitate future research of face deblurring.

1. Details of Network Architectures

1.1. Generator

As shown in Fig. 2 in the main paper, our genera-
tor consists of three parts: the encoder of the deblurring
stream ME , the prior estimation stream P , and the de-
coder of the deblurring stream MD. For our generator,
we adopt residual blocks [1] with channel attention (CA)
module [2, 14] to enhance the flexibility of the network
for restoration process [14]. P is divided into three sub-
networks P = {Pi|i = 1, 2, 3} with the same architecture.
Each Pi estimates the deep feature priors. The input of Pi

is the ith intermediate feature (Ei) of ME .
The detailed architectures for ME , Pi and MD are

shown in Table 1, 2 and 3, respectively. Note that “Init
conv” denotes the convolutional layer that converts the RGB
image to the features. “Down conv” and “Up conv” repre-
sent the convolutional layers with stride 2 for the downsam-
pling and upsampling operation, respectively. “↓2 (·)” indi-
cates the downsampling operation by 2. The spatial size of
the feature is denoted by “W ”, “H”, and “C”, which repre-
sent the width, height and channels, respectively. In Table
2, “Wi”, “Hi”, and “Ci” represent the width, height and
channels of the Ei extracted from ME .

Table 1. The deblurring stream encoder ME architecture.
Block Input Output Kernel Size Output Size

Init conv Iblur E0 1 W ×H × 64
Resblock × 5 E0 E1 3 W ×H × 64
Down conv

Resblock × 5
E1

↓2(E1)
↓2(E1)
E2

4
3

W/2×H/2× 128
W/2×H/2× 128

Down conv
Resblock × 5

E2

↓2(E2)
↓2(E2)
E3

4
3

W/4×H/4× 256
W/4×H/4× 256

Resblock × 5 E3 E4 3 W/4×H/4× 256

Table 2. The prior estimation sub-network Pi architecture.
Block Input Output Kernel Size Output Size

SSFT i Ei Et
i

3
3

Wi ×Hi × Ci

Wi ×Hi × Ci

Resblock × 10 Et
i P̂i 3 Wi ×Hi × Ci

Table 3. The deblurring stream decoder MD architecture.
Block Input Output Kernel Size Output Size
SFT1 D1, P3 Dt

1 3 W/4×H/4× 256
Resblock × 5

Up conv Dt
1 D2

3
4

W/4×H/4× 256
W/2×H/2× 128

SFT2 D2, P2 Dt
2 3 W/2×H/2× 128

Resblock × 5
Up conv Dt

2 D3
3
4

W/2×H/2× 128
W ×H × 64

SFT3 D3, P1 Dt
3 3 W ×H × 64

Resblock Dt
3 D4 3 W ×H × 64

Final conv D4 + E0 Ideblur 1 W ×H × 3

1.2. Channel-attention Feature Discriminator

We modify the feature discriminator [7] and propose to
use CA module [2] to emphasize important channels for im-
age restoration task among the channels of the learned fea-
tures using the VGGFace [8].

The detailed architecture of Dc is shown in Table 4. We
apply the spectral normalization (SN) [6] and leaky ReLU
(lRELU) to all convolutional layers for stable training of our
discriminator. “⊕” indicates the operation of channel-wise
concatenation.



Table 4. The channel attention feature discriminator Dc architecture.
Block Operation Input Output Kernel Size Output Size
CA1 Channel attention P̂1 P̂1

′
3 W ×H × 64

Df,1
Conv2d, SN, lReLU

Down Conv, SN
P̂1

′

Ĉ1

Ĉ1

↓2 (Ĉ1)

3
4

W ×H× 64
W/2×H/2× 64

CA2 Channel attention P̂2 P̂2
′

3 W/2×H/2× 128

Df,2
Conv2d, SN, lReLU

Down Conv, SN
↓2 (Ĉ1)⊕ P̂2

′

Ĉ2

Ĉ2

↓2 (Ĉ2)

3
4

W/2×H/2×128
W/2×H/2× 128

CA3 Channel attention P̂3 P̂3
′

3 W/4×H/4× 256

Df,3
Conv2d, SN, lReLU

Down Conv, SN
↓2 (Ĉ2)⊕ P̂3

′

Ĉ3

Ĉ3

↓2 (Ĉ3)

3
4

W/4×H/4× 256
W/4×H/4× 256

Dh
Conv2d, SN, lReLU

Conv2d, SN, Sigmoid ↓2 (Ĉ3) Final output
4
4

W/8×H/8× 512
W/16×H/16× 1

(a) Unlearned weights

(b) Learned weights
Figure 1. Visualization of the channel weights of the deep features. Each curve shows the channel weights of the deep features which are
extracted from each layer of VGGFace [8] model. (a) Unlearned weights which weight each channel of the deep features equally. (b)
Learned weights which weight each channel of the deep features [8] differently according to importance of deblurring. They are sorted in
descending order. The sigmoid activation function in the CA module [2] constrains the weights in the range [0,1].

2. Analysis on Deep Feature Prior

2.1. Analysis on Channel Weights of Deep Feature
Prior

To verify that there are more important channels of
deep features for deblurring, we analyze the distribution of
learned weight value corresponding each channel. We ex-
tract the deep features from pretrained VGGFace [8] model
using blurry images in the MSPL-Center Testset [4]. By
passing those deep features into the CA module [2] in DC ,
we can obtain the channel weights of the deep features for
restoration. The results are shown in Fig. 1b. The deep
features from relu1 2, relu2 2, and relu3 3 layers

include 64, 128, 256 channels, respectively. Among them,
39.1%, 32.3%, 37.5% of the weights for channels in each
layer are over 0.8, respectively. On the other hand, 34.4%,
39.84%, 36.7% of them are less than 0.2, respectively. This
means that only one-third of the channels in the deep fea-
tures are considered important for restoration. Also com-
pared to the unlearned model (see Table 4 B5 model in main
paper) which gives equal weight to all channels in the deep
features (Fig. 1a), the performance increases in the learned
model (see Table 4 B6 model in main paper) which gives
different weight to each channels in the deep features (Fig.
1b). From these experiments, we can demonstrate that some
of the channels in the deep features are more important for



Table 5. PSNR and SSIM results on MSPL-Center [4] and Shen
testset [9].

Method
MSPL-Center Shen

PSNR SSIM PSNR SSIM
VGGFace Encoder 19.92 0.691 20.18 0.719
DFPG-B(ours) 29.23 0.931 27.13 0.913

deblurring, and it is helpful to give them a higher weight
rather than to give them the same weight as other channels.

2.2. Using VGGFace [8] as an Encoder Instead of
Synthesizing Deep Feature Priors

One key insight of our method is that well-trained face
recognition networks (e.g. VGGFace [8]) are powerful fea-
ture descriptors of “sharp” facial images not “blurry” facial
images. It is inferred from the results of face detection and
verification experiment (see Table 3 in main paper). The
performances of face detection and verification are signif-
icantly decreased from 96.00% to 77.40% in face detec-
tion, and from 93.47% to 77.05% in face verification, when
input image is blurry. This indicates that even the well-
trained face recognition networks fail to capture accurate
information about the face when the input image is blurry.
If such inaccurate information is used as prior information
for restoration process, we hypothesize that restoration per-
formance will be degraded. Based on this hypothesis, we
aim to synthesize the deep features using blurry input im-
age, so that they can be similar to “sharp deep features”
obtained from VGGFace using “GT sharp face image”.

To verify our hypothesis, we conduct an experiment that
directly utilizes the “blurry deep features” of VGGFace for
face deblurring. Here, the blurry deep features represent
the deep features obtained from VGGFace using “blurred
facial image”. To be specific, we replace the encoder of our
generator with the pre-trained VGGFace and fix the weights
of VGGFace. We remove our prior estimation stream and
directly connect the VGGFace and our decoder with skip
connection. For fair comparison, the relu1 2, relu2 2,
and relu3 3 layers of VGGFace [8] is connected to the
decoder, as same as our proposed DFPG network. Then, we
train the decoder using Eq. (7) in our main paper.

The results are shown in Table 5. We denote this addi-
tional experiment as “VGGFace Encoder” in Table 5. The
results of the VGGFace Encoder are worse than those of
the proposed method. In addition, the VGGFace Encoder
performs worse than the B1 model of Table 4 in the main
paper. Considering that the B1 model is a model that does
not use deep feature priors for face deblurring, it can be seen
that it is very inefficient to directly use the deep features of
VGGFace obtained from the blurry image.

Table 6. Comparison with state-of-the-art methods for average
run time and model parameters.

Method Implementation Run time (sec) Parameters (M)
Shen et al. [9] MATLAB(GPU) 0.05 14.8
Lu et al. [5] Pytorch(GPU) 0.02 53.0

Xia et al. [10] Tensorflow(GPU) 0.19 41.8
Yasarla et al. [11] Pytorch(GPU) 0.16 14.4

Lee et al. [4] Pytorch(GPU) 0.08 18.5
Ours Pytorch(GPU) 0.05 44.7

3. Additional Experimental Results
3.1. Inference Time and Model Parameters

In Table 6, we compare the inference time and the num-
ber of model parameters with existing methods. Follow-
ing [9, 4], we measure the average of inference time for
10 images with input size of 128 × 128 × 3 on a single
NVIDIA Tital XP GPU. The results show that our model is
clearly faster than other prior-based models [11, 4]. The
speeds of [9] and our model are comparable. However,
when considering both the deblurring accuracy (see Table
2 in the main paper) and the inference speed, we can say
that our model performs best in face deblurring.

3.2. Qualitative Comparisons on Real Blur

The more results on real blur are shown in Fig. 2. The
results of our method (see the last column in Fig. 2) demon-
strate that our method performs best for the real blurred fa-
cial images. For example, our method restores more fine
textures (i.e., hair and wrinkles) compared to methods of
[9, 11, 4], as shown in the 1st and 2nd rows in Fig. 2. Our
method produces images with more details of small facial
components (i.e., eyes, lips, and teeth) than others (see the
3rd and 4th rows). In addition, the results in the last row
show that our method can restore images with fewer arti-
facts than others.

3.3. Qualitative Comparisons on Benchmark

We provide more qualitative comparisons with state-
of-the-art methods [9, 12, 11, 4] on face deblurring test
sets [9, 4]. Note that the notations for the models compared
in this supplementary material are the same as described in
the main paper. The results for Shen test set [9] and MSPL
test set [4] are shown in Fig. 3 and 4, respectively. In
our comparison, our method restores more visually pleas-
ing results with sharper edges and richer textures compared
to others.



Input Shen et al. [9] Yasarla et al. [11] Lee et al. [4] DFPG (ours)
Figure 2. Qualitative comparisons on Real-Blur test set [3].



Input Shen et al. [9] Yasarla et al. [11] Lee et al. [4] DFPG-A (ours) Ground Truth
Figure 3. Qualitative comparisons on Shen test set [9].



Input *Zhang et al. [13] *Yasarla et al. [11] Lee et al. [4] DFPG-B (ours) Ground Truth
Figure 4. Qualitative comparisons on MSPL test set [4].
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