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In the supplementary materials, we present comparative
detection results and visualization analysis for our frame-
work (ILLUME) and the state-of-the-art [4].

1. Additional Detection Examples

We present additional comparative detection results in
Figure S1 for the state-of-the-art and ILLUME. The de-
tection results are shown on the target domain (Foggy
Cityscapes) [6] for the weather adaptation task. We can
see the improved detection performance using our frame-
work. The instances are successfully detected even in ex-
treme weather conditions (foggy weather) as compared to
state-of-the-art where most of the instances remain unde-
tected due to domain gap between source (Cityscapes) [1]
and target data (Foggy Cityscapes) [6].

In Figure S1, we can see instances such as train and per-
son that are successfully detected using ILLUME. As can be
seen in the first row of the figure, where the train instance
(right side of image) is correctly detected using ILLUME,
while state-of-the-art misses it. Also, in the third row, we
can see that state-of-the-art fails to detect multiple bicycle
instances as compared to our detection results where multi-
ple bicycles (on the left of the image) are detected success-
fully. Similarly in other comparative examples in the figure,
we can see that most instances like persons or cars remain
undetected in the state-of-the-art results mostly due to do-
main gap (foggy weather); in contrast, they are correctly
detected using ILLUME. This proves the effectiveness of
our method (ILLUME) to improve detection performance as
it focuses on enhancing important instances in the images.

2. Visualization Analysis

In Figure S2, we present a detailed qualitative visual-
ization analysis of the enhanced features using our method
(ILLUME) compared with state-of-the-art. We use target
samples from the Foggy Cityscapes dataset [6] (weather
adaptation task) for this analysis. These features are the

transformed features, which are the output of the detection
backbone network. A clear comparison can be seen be-
tween state-of-the-art and ILLUME. Our method correctly
highlights important instances in the image, like car or bike
which are missed by [4]. As seen in the second and third
rows, many instances are missed in the feature maps of
state-of-the-art, or inaccurately highlighted or enhanced, as
seen in the first row. In contrast, our methods enhances
the objects of interest as required, and hence does not miss
them. The enhanced features depict the effectiveness of our
method to transform features such that only important in-
stance features would be considered by Faster R-CNN [5]
to learn domain-invariant features essential for alignment.
In our paper, we also perform similar visualization analy-
sis for two different domain adaptation tasks: (1) Weather
Adaptation (Cityscapes [1] to Foggy Cityscapes [6]); and
(2) Dissimilar Domain Adaptation (Pascal VOC [2] to Cli-
part [3]), in Sections 4.4 and Figure 3. It is worth noticing
that visualizations for both source (Cityscapes) and target
(Foggy Cityscapes) instances are similar irrespective of the
domain gap, as shown in Figure 3 of our main paper. These
results also corroborate the claim of our method’s effective-
ness in aligning the instances well with improved enhance-
ment of the feature maps – thereby improving detection per-
formance.
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Figure S1. Comparative Detection Results: Improved detection performance can be seen using our method (ILLUME), compared to
state-of-the-art [4] that fails to detect instances like train in first row, bicycles in third, and persons or cars in other.
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Figure S2. Visualization Analysis : Visualizations of transformed features using our ILLUME method that enhances important instances
successfully. On the other hand, the state-of-the-art [4] inaccurately highlights instances as seen in the top row, as well as misses important
instances as seen in the second and third rows.
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