Supplementary Material: Hole-robust Wireframe Detection

Naejin Kong, Kiwoong Park, Harshith Goka
Samsung Research AI Center
{naejin.kong, kyoong.park, h9399.goka}@samsung.com

1. Introduction

In this supplementary material, we show more details on the approach and further analysis, experiments and results.

Contents

L Introductionl

2.1. Backbon Kl . e e

| 2.4. Generated RGB Images|.

| 3. Details on Conditional Training|
3.1. Conditional Data Generation and Tramning| e

3.2. Avoid-Isolation Klgorltﬁﬂ ..
| G T Trul P To Label Distributi Tl Criteria

| 5. Implementation Details|

| 6. Extra Analysis and Studies|
| 6.1. Ablation Studies on Conditional Training with Various Settings|.
| 6.2. Applying GAN to Other Types of Information|
| 6.3. Testing the Sole Effect of Pseudo Labeling{.

| 7. F-Scores on Tables 1 and 2 in the Main Paper]

8 FExira Precision-Recall C |
8.1. PR Curves for SAP'” on Tests in Table 1 of the Main Paper|
8.2. PR Curves for AP on Tests in Table 1 of the MainPaper{
8.3. PR Curves for sAP'” on Tests in Table 2 of the Main Paper|
8.4. PR Curves for AP on Tests in Table 2 of the Main Paper{

| 9. Initializing the Training with a Pretrained Ordinary Detection Model|

10 Rol Di Over Lit Condition]

| 11. Testing Ordinary Detection Models on Inpainted Images|

10
10
11
11

13

14
14
14
16
16

19

19

21

12. More Qualitative Results|

12.2. Real-world Examples with Occlusion by Foreground Objects|

Existing: Ours:

HourGlass Unit

)4

HourGlass Unit

HourGlass Unit

>0 4

HourGlass Unit

(a) HG2 Architecture

Existing: Ours:

HourGlass Unit
|

b L ‘»
(input feature) (line feature)

Residual - HT Residual /= .
Module Module Module - HT Module
(b) HT-HG Architecture

Figure 1: Backbone architectures. (a) HG2 architecture. (Left): HourGlass units are stacked twice. (Right): Our RGB
decoder is connected at the first bottleneck. (b) HT-HG architecture. (Left): A Hough-transform module is attached right
after each Residual Module. See Figure [2|for details of the Residual Module. (Right): We replace the first Residual Module
with a full HourGlass unit, and connect an RGB decoder at its bottleneck (see Figurefor details).

2. Details on RGB GAN
2.1. Backbone Network

The backbone network first downsamples a 512x512 input RGB image to 128 x 128 with 256 channels. Then, it stacks
units adopted from HourGlass [9] as follows:

HG2 Architecture: A full HourGlass unit is adopted from [9]. In this backbone architecture, the HourGlass units are
stacked up twice as shown in Figure[T(a): Existing. L-CNN [13], HAWP and F-Clip(HG2) [1]] frameworks use this HG2
type backbone.

HT-HG Architecture: A Residual Module is a basic building block of the HourGlass network [9]]. This module takes an
input feature x in any channels and produces a residual output feature in p * 2 channels that is added to the input feature,
where the original resolution of the input feature is preserved (see Figure [2] for details). In this backbone architecture, the
Residual Modules are stacked four times, where a Hough-transfrom module (see Figure[T[b): Existing) is inserted right after
each of the Residual Modules. HT-LCNN [[13] [7]] and HT-HAWP [[12} [7] frameworks use this HT-HG type backbone.

2.2. RGB Decoder for RGB GAN

Our RGB decoder is connected at the bottleneck of the first HourGlass unit. Such a case on the HG2 architecture is shown
in Figure[T(a): Right. In case of the HT-HG architecture, we replace the first Residual Module with a full HourGlass unit
and connect the RGB decoder at its bottleneck as shown in Figure [T[b): Right. We depict the RGB decoder architecture
in detail in Figure 2] The last layer of the RGB decoder is a simple convolutional layer (one 1x 1 convolution to compress
channels and one batch normalization) that achieves a final 128 x 128 image in RGB channels. In practice, to better regularize
the GAN training, we use spectral normalization [8]] for the whole backbone network along with all branches, including the
RGB decoder but excluding the Hough-transform modules, as well as a discriminator to be addressed in Section[2.3]

Residual Module (blue or red shaded box)

p P p*2
C]ﬂ
if e, # (p * 2) then
@) (b) () ? convyg(cy, p*2)
‘ & endif
e

(p=128)
256

512 x 512
128 x 128

1 (=128) (p=32)
256 64 3

|, :downsample

SR SEINST I SV N [——

&
A @ :A+B LS
(e8]
8 , i
@ or @ : upsample(A) + B Also Residual Module -

Figure 2: First HourGlass unit (in blue) and RGB decoder (in red) in our RGB GAN. The number above the box
is the number of output channels. In the Residual Module shown on top, each of convolutional blocks (a), (b), (c) implies
batchnorm+ ReLU + conv, where (a) and (c) use convix; and (b) uses convsxz with padding 1, hence the original resolution
of the input feature is preserved. ¢, is the number of channels of the input feature x, and (a), (b), (c) blocks produce p, p, and
p * 2 output channels, respectively. If ¢, # (p * 2), the number of channels of x is transformed to p * 2 before the residual
addition. Each of the blue or red shaded boxes indicates a Residual Module shown on top of the figure. The final layer of the
RGB decoder is a simple convolutional layer (convix; (64, 3) + batchnorm) that outputs a 128 x 128 image in RGB channels.

64 Discriminator

128 x 128
14 x 14

Figure 3: Discriminator architecture in our RGB GAN. The number above the trapezoid is the number of output channels.

Figure 4: Generated RGB images through our RGB GAN.

2.3. Discriminator for RGB GAN

We depict the patch discriminator network architecture in Figure [3] We adapted it from the basic form in PatchGAN [6].
Each pixel in the final 14x 14 output feature corresponds to a 70x 70 patch in the input image. In practice, we use spectral
normalization [8]] for the discriminator, backbone and RGB decoder to better regularize the GAN training.

2.4. Generated RGB Images

We visualize in Figure] the generated RGB images in the 128 x 128 resolution from our trained RGB GAN. It demon-
strates that the backbone network learned to infer the overall structure inside the hole, which will be then, propagated to more
robust structural estimation through the other parts of the model.

3. Details on Conditional Training
3.1. Conditional Data Generation and Training
1. Creating a pool of object silhouettes

(a) Preparing a pool of 1.3M object silhouette maps by applying Detectron2 [[10]] (‘things’ only from panoptic seg-
mentation with COCO-PanopticSegmentation/panoptic_fpn R 50_3x) on Places365 [14] Test set
(328,500 images)

(b) Leaving 1,107,482 object silhouette maps from the initial pool, where each silhouette map in the pool satisfies
both a. and b. such that:
a. max (width, height) of the tight bounding box around the silhouette map is smaller than 512 pixels.
b. The silhouette map contains less than 78,643.2(= 512 * 512 * 30%) pixels.

(c) According to the ratio of the hole size (i.e., number of pixels) to 512x 512 pixels, grouping the object silhouette
maps from the pool into one of 0.1-1%, 1-2%, ..., 29-30% intervals, where each interval has 1% gap

(d) Randomly selecting 1,500 object silhouette maps from each of the 0.1-1%, ..., 29-30% intervals.
(e) Finally, 45,000(= 1,500 silhouettes * 30 intervals) object silhouette maps are prepared.

2. Conditional data generation
- Used both for Aveid-isolation and Random Placement training

(a) Generating a pool of N mask maps for each input image in the training set (we use N = 10), and for each of the
0.1-1%, 1-2%, ..., 9-10% hole size intervals (i.e., 10 intervals in total)

(b) A mask map within a hole size interval is created as follows:
a. Randomly select an object silhouette map within the interval size, from the silhouette pool made at Step 1.
b. Superimpose the chosen silhouette onto a 512x512 region, by avoiding isolated components (see Algorithm T]
below).
c. A 512x512 mask map with the silhouette hole is created.

(c) Finally, for each image in the training set, N mask maps at each interval thus in total [N * 10 intervals | mask
maps are prepared in advance.

3. Conditional training

(a) Training by choosing a random size hole

i. Casel: Avoid-isolation. For each image, randomly selecting one from all of the [N * 10 intervals | mask
maps corresponding to the image
Case2: Random Placement. For each image, randomly selecting one from all of the [N * 10 intervals * T’
images | mask maps, where 7' = number of all images in the dataset

ii. Superimposing the hole in the mask map onto the 512x512 resized image to create a pair of
(image_with_hole, mask)

(b) Training by progressively increasing the hole size along with epochs

i. Casel: Avoid-isolation. For each image and at the designated hole size interval, randomly selecting one
from the N mask maps corresponding to the image
Case2: Random Placement. For each image and at the designated hole size interval, randomly selecting
one from the [N * T" images] mask maps, where 7" = number of all images in the dataset

ii. Superimposing the hole in the mask map onto the 512x512 resized image to create a pair of
(image_with_hole, mask)

3.2. Avoid-Isolation Algorithm

First, we define the following three hole types:

1. Hole Type 1:

* The hole overlaps with line segment(s), and also does not contain any junction.

2. Hole Type 2:

* One or more junction(s) are contained in the hole.

* The number of line segments whose endpoints are both contained in the hole, is < 1.

3. Hole Type 3:

* One or more junction(s) are contained in the hole.
* Satisfying the following criteria that can be made (sub-)optimal by repeated searching (see Algorithm[T} L10-20):

— Fewest number of line segments whose endpoints are both contained in the hole
— Largest total length of line segments that (at least partially) overlap with the hole

Note that Algorithm I]attempts to create a mask by avoiding isolated components, but there can be exceptional cases that

do not allow to strictly avoid isolation after all attempts, and in that case Hole Type 3 is used, which creates a mask that may
contain some isolated components.

Algorithm 1 Avoid-Isolation Algorithm

1:
2
3
4:
S:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:

function AVOIDISOLATION(s, K) > s: a silhouette, K: number of max attempts (we use 500)

if rand(0,1) > 0.8 then > By 20% chance, trying to create Hole Type 1 that contains no junction
mask < randomly_place_hole_until_Hole_Type_1_found(s)
if succeed to find Hole_Type_1 within K attempts then
return mask
end if
end if
mask <— randomly_place_hole_until Hole_Type_2_found(s)
if fail to find Hole_Type_2 after K attempts then
Nprey < Inf
Mprev «~0
for k <+ 1to K do
n <— number of line segments whose endpoints are both contained in the hole
m < total length (= number of pixels) of line segments overlapping with the hole
if n < nprey and m > Mmype, then
Nprev ~n
Mprey & M
mask < set_mask(s) > After many attempts, it becomes (sub-)optimal Hole Type 3
end if
end for
end if
return mask

23: end function

Wireframe Training Set (5,000)
[mean: 74.98] [mode: 65.00-70.00]

Wireframe Training Set (5,000)
[mean: 6456.57] [mode: 6500.00-7000.00]

Wireframe Training Set (5,000)
[mean: 1.34] [mode: 1.32-1.34]

100 150

Number of Lines

200

(a) Number of lines

L

350

300

10000
Length of Lines

15000 20000

(b) Total length of all lines

25000

1.0 12 14

Ratio of Juncs/Lines

16

(c) Ratio of # junctions / # lines

Figure 5: Histograms on three criteria for the ground truth labeled Wireframe training set [5]. Each histogram depicts
the frequency of images over the entire Wireframe training set, with respect to the bins corresponding to either (a) number of

lines, (b) total length of all lines, or (c) ratio of #of Junctions

Raw Pseudo-labeled Dataset (3,304,547)

[mean: 50.44] [mode: 0.00-5.00]
200000

of Lines 1n an 1mage.

Raw Pseudo-labeled Dataset (3,304,547)
[mean: 4308.82] [mode: 3000.00-3500.00]

Raw Pseudo-labeled Dataset (3,304,547)
[mean: 1.50] [mode: 1.50-1.52]

175000

150000

125000

100000

75000

50000

25000

0
0 100 150

Number of Lines

200

(a) Number of lines

200000

150000

100000

50000

10000
Length of Lines

15000 20000

(b) Total length of all lines

L

25000

200000

175000

150000

125000

100000

75000

50000

25000

04

4 Em R

1.0

12 14
Ratio of Juncs/Lines

16

(c) Ratio of # junctions / # lines

Figure 6: Histograms on three criteria for the raw pseudo-labeled dataset before applying the thresholds. The distribu-
tions are either skewed as in (a) and (b), or irregular as in (c) due to outliers from inaccurate detection.

Final Pseudo-labeled Dataset (142,742)

14000 o

Final Pseudo-labeled Dataset (142,742)

Final Pseudo-labeled Dataset (142,742)

12000 4

10000 4

8000

6000

4000

2000 4

0 100

150
Number of Lines

200

(a) Number of lines

20000 4

17500 4

15000 4

12500 4

10000 o

7500

0 10000

15000
Length of Lines

20000

(b) Total length of all lines

25000

25000

20000

15000 4

10000 4

5000

0.8 1.0 12 14

Ratio of Juncs/Lines

1.6

(c) Ratio of # junctions / # lines

Figure 7: Histograms on three criteria for the final pseudo-labeled dataset after applying the thresholds. Once the
thresholds are applied, the new distributions look quite alike the ground truth distributions whose other half with respect to

the mean value has been cut out.

4. Ground Truth and Pseudo Label Distributions on Three Criteria

* Number of lines in an image > 74.98
* Total length of all lines in an image > 6456.57

of Junctions

* The ratio # of Lines

in an image < 1.34

The threshold values in these three criteria above were determined by inspecting the distributions of ground truth wireframe
labels in each image of the original Wireframe training set [3]], which follow quite ideal normal distributions. Histograms in
Figure 5|depict those distributions on the three criteria.

We extracted the thresholds from the ground truth label distributions instead of pseudo label distributions, because it is
hard to obtain accurate distributions from the pseudo labels as they may contain several outliers whose detection had failed
badly. As shown in Figure[f] the raw pseudo-labeled dataset before applying the thresholds appear to be either skewed as in
(a) and (b), or irregular as in (c) due to those outliers.

Assuming that ideal distributions of the pseudo labels would be similar to those of the ground truth labels on the three
criteria, we applied the thresholds to the candidate pseudo-labeled examples, to pick only a subset of them more likely to
have better detected and more dense labels. This effectively removes the outliers from the raw dataset: as shown in Figure
the new distributions of the final pseudo-labeled dataset after the thresholds are applied quite resemble the ground truth
distributions in Figure [5] whose other half with respect to the mean value, corresponding to each of our threshold values, has
been cut out.

5. Implementation Details

We implemented our approach using PyTorch, and trained each model on one V100 GPU. We keep the original hyper
parameters in the basic frameworks as identical as possible. Here we describe training details of our approach applied to
the HT-HAWP [12} [7] framework. When pseudo labeling is not applied, we trained the model on our modified Wireframe
dataset 30 epochs in total. We progressively increase the hole size by +1% at every three epochs, such that 0.1-1%, 1-2%,
..., 9-10%. We kept the default batch size 6 and learning rate 4e-4. When pseudo labeling is enabled, we first trained on the
large pseudo-labeled data 10 epochs in total, while incrementing the hole size +1% at every epoch. We used a larger batch
size 8, but kept the default learning rate 4e-4. We then fine-tuned on the modified Wireframe dataset 10 epochs in total, again
+1% increment of the hole size at every epoch, while using a smaller batch size 6 and smaller learning rate 4e-5.

6. Extra Analysis and Studies

6.1. Ablation Studies on Conditional Training with Various Settings

Wireframe Test Set [5]
10-30% Hole 0-10% Hole without Hole
@ () () | sAP° sAP'" mAP’ APY | sAP’ sAP® mAP’ AP | sAP° sAP'® mAP’ APM
HT-HAWP [12]17] 35.64 38.54 41.8 65.5|51.58 55.50 55.1 80.1 | 63.26 67.12 61.3 85.7
v 4479 48.72 48.3 74.1 | 58.04 62.18 58.5 83.0 | 62.78 66.59 60.7 85.4
Va4 44.99 48.92 482 67.8 | 58.27 62.55 58.7 78.8 | 63.00 66.90 60.9 80.9
vV / / |45.11 4894 482 74.4 |58.59 62.85 59.2 83.7 | 63.31 67.19 61.4 85.5

(a): Training with masked data with hole
(b): Progressive hole size increment along with epochs
(c): Placing a hole by avoiding isolated components

(a)+(b)+(c): Conditional training

Table 1: Ablation study on conditional training.

Wireframe Test Set [5]

10-30% Hole 0-10% Hole without Hole

@ () () | sAP° sAP” mAP’ APY | sAP® sAP mAP’ APY | sAP° sAPY mAP’ APY
(Trained on masked data with “0.1-10% hole size”)

v 44779 4872 483 74.1 | 58.04 62.18 58.5 83.0 | 62.78 66.59 60.7 85.4
v v 44.99 48.92 482 67.8 | 58.27 62.55 58.7 78.8 | 63.00 66.90 60.9 80.9
(Trained on masked data with “0.1-30% hole size”)

v 45.04 48.89 48.6 74.0 | 57.63 61.79 58.7 83.1 | 62.45 66.28 60.9 85.4
v v 45.04 4891 48.6 70.7 | 57.67 62.02 58.5 80.1 | 62.20 66.17 60.6 82.7

(a): Training with masked data with hole
(b): Progressive hole size increment along with epochs

Table 2: Effect of larger hole size around “0.7-30% " instead of “0.1-10% on training with masked data. The basic framework
is HT-HAWP [12| [7].

Table [I] shows an ablation study on our conditional training in various settings. We studied it with the HT-HAWP [12] 7]
baseline on the Wireframe test set [5]. The ablations between “applying (a)” and “applying (a) (b)” show that progressively
increasing the hole size is better than choosing a random size hole, since this scheme lets the training initially focus on
ordinary detection and then, later on, adapt to gradually larger holes thus gives more time before facing more challenging
tasks. The ablations between “applying (a) (b)” and “applying (a) (b) (c)” show that placing a hole in the image by carefully
avoiding isolated components is more effective than placing it at an entirely random location, because a random placement
may result in a scene component entirely hidden if the hole is large. This makes sense, as it would be irrational to expect the
network to predict hidden structures without any visible clue left in the input image.

Table 2] studies an effect of larger hole size on training with masked data. Note that above 10%, it is hard to place such a
large hole by strictly avoiding isolated components when generating masked data, thus we had to place the hole above 10%
at an entirely random location. Since it is not possible to apply the avoid isolation scheme around 10-30% size, we chose to
ablate only for (a) and (b) but except (c) avoid-isolation for this study. The numbers in this table show that training with a
larger hole size around “0.1-30%” is not clearly beneficial at 10-30% hole inference than training with a smaller hole around
0.1-10%, and it works even worse at 0-10% hole inference and without-hole inference in general. Also, according to Tablem
applying the avoid isolation scheme is clearly beneficial. For these reasons, we concluded to use a 0.1-10% hole size range
for creating our final conditional training data.

10

6.2. Applying GAN to Other Types of Information

Wireframe Test Set [5]
10-30% Hole 0-10% Hole without Hole

sAP° sAP'” mAP’ AP [sAP° sAP'™® mAP’ APY | sAP® sAPY mAP’ APH

HT-LCNN [15]7] + Cond’ training | 42.08 45.69 47.6 70.8 | 55.21 59.29 58.5 78.7 | 60.20 64.11 60.9 81.2
+ junction heatmap GAN 29.06 31.79 31.0 48.9 | 37.55 41.04 37.8 59.0 | 43.73 47.63 409 65.5
+ line heatmap GAN 40.81 44.36 46.7 69.3 | 53.67 57.75 57.6 77.6 | 58.63 62.46 60.0 80.1
+RGB GAN 43.35 47.06 48.3 72.1 |57.02 61.02 59.3 80.2 | 61.57 65.40 61.6 82.4
HT-HAWP [12][7] + Cond’ training | 45.11 48.94 48.2 74.4 | 58.59 62.85 59.2 83.7 | 63.31 67.19 61.4 855
+ full AFM GAN 45.41 49.02 479 73.2|58.96 63.03 58.9 82.6 | 63.52 67.24 61.1 84.7
+ distance map GAN 44.80 48.65 482 74.4|58.72 6295 59.3 83.6 |63.25 67.16 61.5 85.7
+ angular maps GAN 45.10 48.72 47.7 73.6 | 58.94 62.90 58.7 83.1 | 63.44 67.11 60.9 85.1
+RGB GAN 45.72 49.56 48.0 75.0 | 59.33 63.59 59.1 84.0 | 63.56 67.49 612 85.6

Table 3: Ablation study on applying GAN to other components.

Table |3| shows how we concluded to apply GAN [3]] to RGB generation instead of a junction, line, or attraction field map.
The first study was made on HT-LCNN [[15. [7] baseline, where combining junction map GAN or line map GAN significantly
reduced the performance than without it. We suspect that the GAN is not suitable to estimate accurate sparse image maps
for lines and junctions that are used to obtain coordinates information through direct conversion later. The second study
was made on HT-HAWP [12| [7] that estimates a 4-D holistic Attraction Field Map (distance map and three more angular
orientation maps) representing line segments. We applied GAN [3]] to either all components of the AFM or only part of them.
This worked quite well since these components of AFM are dense representation maps, but still, RGB GAN showed better
numbers on structural metrics. We believe that learning to generate the scene contents through RGB GAN contributes to
deeper scene understanding than indirectly going through the generation of structural maps.

6.3. Testing the Sole Effect of Pseudo Labeling

Wireframe Test Set [5]

10-30% Hole 0-10% Hole without Hole
sAP’ sAP'” mAP’ APY | sAP° sAP'” mAP’ APY | sAP° sAP'” mAP’ APY
HAWP [12] 34.80 37.74 40.8 64.5 | 50.80 54.84 54.0 79.4 | 62.52 66.49 60.2 85.0
+ Pseudo labeling 36.51 39.39 42.6 66.3 | 53.29 57.07 56.5 80.9 | 65.45 69.13 62.8 86.5
HT-HAWP [12]17] 35.64 38.54 41.8 65.5|51.58 55.50 55.1 80.1 | 63.26 67.12 61.3 85.7
+ Pseudo labeling 36.63 39.55 429 66.5 | 53.30 57.21 56.5 81.2 | 65.64 69.40 63.1 86.5

York Urban Dataset [2]

10-30% Hole 0-10% Hole without Hole
sAP> sAP'” mAP’ AP | sAP° sAP'” mAP’ AP | sAP° sAP'” mAP’ APY
HAWP [12] 1579 17.48 225 463 |21.61 23.79 28.6 57.3 |26.15 28.54 31.6 61.3
+ Pseudo labeling 16.37 18.22 24.2 47.6 | 22.43 24.77 30.0 58.0 | 26.75 29.18 32.8 61.6
HT-HAWP [12][7] 15.57 17.18 232 46.8 | 21.45 23.63 29.0 56.6 | 25.31 27.65 31.9 60.7
+ Pseudo labeling 15.63 17.33 239 46.4 |21.20 23.37 29.6 56.8 | 25.72 28.04 32.6 60.9

11

Table 4: Effect of training on pseudo-labeled data.

In order to test the sole effect of pseudo labeling, we trained HAWP [[12] and HT-HAWP [12, 7] baselines on our pseudo-
labeled data without conditional masks. We applied 10 epochs on the pseudo data training as well as fine-tuning, same as our
full approach works. As shown in Table] training on our large pseudo-labeled data helps to outperform the baseline model
trained only on small ground truth labeled data in general, but these improvements are not as dramatic as our full approach
cases, especially on the hole-robust performance gains. This again proves that the conditional training and RGB GAN in our
full approach are important factors to conquer the hole occlusion problem.

12

7. F-Scores on Tables 1 and 2 in the Main Paper

Wireframe Test Set [S] York Urban Dataset [2]
10-30% Hole 0-10% Hole without Hole 10-30% Hole 0-10% Hole without Hole
B sF0 FT [s sF° FT [sFP sF0 BT B sF0 F1 [s sF0 FT [s sF0 FT
L-CNN [15] 42771 4487 67.1 | 52.19 54.61 744 | 59.12 61.31 76.9 27.00 28.36 54.6 | 31.99 33.53 60.1 | 3542 36.92 61.9
HT-LCNN [15)7] 4374 4581 653 | 5340 55.72 762 | 60.53 62.71 79.0 || 28.10 29.76 53.1 | 33.59 3534 58.6 | 37.14 3891 60.5
F-Clip(HG2) [1] 4489 47.54 693 | 54.85 57.86 77.6 | 62.04 64.94 80.7 || 2843 30.26 56.3 | 33.60 3544 624 | 37.50 39.28 64.3
F-Clip(HR) [1] 45.61 48.11 699 | 55.95 58.76 78.1 | 63.46 66.08 81.5 || 29.25 31.13 57.6 | 35.01 37.03 64.2 | 38.90 40.82 66.4
LETR [11] 4528 4845 71.4 | 57.08 60.55 80.4 | 62.59 66.12 83.2 || 28.88 3140 57.7 | 34.04 37.10 64.6 | 37.52 40.50 66.7
HAWP [12] 4494 47.04 69.1 | 5529 5771 774 | 62.63 64.87 80.6 28.03 29.67 55.6 | 33.86 35.56 62.7 | 37.88 39.61 653
HT-HAWP [12][7] 4528 4735 70.0 | 55.69 58.03 78.3 | 63.06 65.19 81.6 || 27.91 2946 56.5| 33.57 3531 63.1 | 37.36 39.08 65.1
HAWP + Our full approach 53.16 55.32 73.3 | 62.08 64.37 80.7 | 6493 67.01 823 || 32.74 34.40 59.6 | 37.43 39.18 64.7 | 38.81 40.52 66.3
HT-HAWP + Our full approach | 53.48 55.63 75.1 | 62.57 64.90 81.8 | 65.44 67.58 83.0 || 32.35 33.81 59.2 | 37.30 38.89 63.9 | 38.68 4033 65.1

Table 5: Effect of our full approach, evaluated on the Wireframe test set [5] and York Urban dataset [2], with and
without hole. sFT (T: distance threshold) and F! are F-score measurement for sAPT and APY. See text for more details.

Approach Wireframe Test Set [5] York Urban Dataset [2]
10-30% Hole 0-10% Hole without Hole 10-30% Hole 0-10% Hole without Hole

32 33 34] P sFU FT [sFP sF° F [P sF0 B B sF° F1 [5P sF° F1 | P sF0 BT
L-CNN [15] 4271 44.87 67.1 | 52.19 54.61 744 | 59.12 6131 769 || 27.00 2836 54.6 | 31.99 33.53 60.1 | 3542 3692 61.9

v 46.39 48.54 67.7 | 54.38 56.76 752 | 58.28 60.50 77.4 30.48 31.81 52.6| 3543 37.15 58.1 | 37.24 38.80 59.6

v 7/ 47.59 49.84 69.5| 55.87 5821 75.4 | 59.48 61.68 77.1 || 30.65 32.34 56.5| 34.87 36.51 60.9 | 36.66 38.28 62.3
HT-LCNN [15][7] 4374 4581 653 | 53.40 5572 76.2| 60.53 62.71 79.0 || 28.10 29.76 53.1 | 33.59 3534 58.6 | 37.14 3891 60.5

v 4820 50.24 70.3 | 56.43 58.67 76.1| 60.15 6228 77.5|| 30.35 31.98 53.6 | 34.60 36.23 57.7 | 36.38 38.05 58.8

v / 49.23 5141 71.7| 5795 60.18 77.8 | 61.35 63.51 79.2 || 30.62 32.08 58.4 | 34.68 36.43 62.0 | 36.29 38.02 62.9
(a): HAWP [12] 4494 47.04 69.1 | 5529 5771 774 | 62.63 64.87 80.6 28.03 29.67 55.6| 33.86 3556 62.7 | 37.88 39.61 653
(b): v 50.19 5232 71.5| 5875 61.08 78.6| 62.34 64.45 80.5 || 30.78 3220 57.3 | 3534 37.05 62.6 | 37.24 38.87 64.3
(c): v 7/ 50.30 52.59 72.1 | 59.18 61.55 789 | 62.64 64.85 80.6 31.71 3321 58.8 | 3641 3822 644 | 3831 3994 654
(d): v v | 5287 54.83 727 | 61.63 63.87 80.0 | 64.95 66.88 81.7 || 32.52 34.11 58.1| 37.37 39.31 63.9 | 39.00 40.76 65.1
(e): v v /| 5316 5532 733 | 62.08 64.37 80.7 | 64.93 67.01 823 32.74 3440 59.6 | 37.43 39.18 64.7 | 38.81 40.52 66.3

(f): HT-HAWP [12.[7] 4528 4735 70.0 | 55.69 58.03 783 | 63.06 65.19 81.6 || 2791 29.46 56.5| 33.57 3531 63.1 | 37.36 39.08 65.1

(2): v 50.87 53.06 72.9| 59.52 61.83 79.6 | 63.11 6521 81.3 || 30.67 32.26 59.0 | 3570 37.31 63.6 | 37.41 39.10 65.0
(h): v 7/ 51.71 5397 73.9| 60.64 63.02 80.4 | 63.83 66.02 82.0 || 30.97 32.54 593 | 3592 37.70 63.9 | 37.30 38.98 64.8
(i): v v | 5237 5427 735 | 61.15 63.41 80.7 | 64.25 66.33 82.1 31.07 3252 59.6 | 35.74 37.34 64.0 | 37.46 38.98 65.2
(): v / /| 5348 5563 75.1 | 62.57 64.90 81.8 | 6544 67.58 83.0 || 32.35 33.81 59.2 | 37.30 38.89 639 | 38.68 40.33 65.1
F-Clip(HG2) [1] 4489 4754 693 | 5485 57.86 77.6| 62.04 6494 B80.7 || 28.43 30.26 56.3 | 33.60 3544 62.4 | 37.50 39.28 64.3
v 50.47 5331 72.1| 5894 62.07 79.0 | 6228 6523 80.6 || 31.47 33.50 58.1 | 36.41 3845 63.4 | 38.07 3991 64.8
v 7/ 51.15 54.05 72.7 | 59.66 62.94 79.9 | 62.85 65.75 81.1 || 31.97 33.85 58.5| 36.53 38.69 63.6 | 38.25 40.23 64.8
F-Clip(HR) [1] 45.61 48.11 69.9| 5595 58.76 78.1 | 63.46 66.08 81.5 || 29.25 31.13 57.6 | 3501 37.03 64.2 | 38.90 40.82 66.4
v 52.61 5547 73.5| 61.52 64.35 80.6 | 64.40 66.96 82.0 || 33.43 3530 59.0 | 38.03 40.36 64.5 | 39.69 41.70 65.6

Table 6: Applying our approach to various recent frameworks. Approach 3.2: Conditional Training, Approach 3.3: RGB
GAN, and Approach 3.4: Pseudo Labeling. Best metrics within each framework group are marked in bold font. Our approach
can be applied to various recent frameworks sharing the stacked HourGlass [9] backbone, and is consistently effective both
without and with hole in general.

Table [5]and Table [6]show F-Scores on Tables 1 and 2 in the Main Paper, respectively.

Table[5|shows an almost identical trend as Table 1 in the Main Paper. On the Wireframe test set, our full model (HT-HAWP
+ Our full approach) shows the best hole-robust performance at all metrics with hole, and the best numbers at sF> and sF'°
metrics without hole, and the second best at F! without hole. On the York Urban dataset, our full model (HAWP + Our full
approach) shows the best hole-robust performance at all metrics with hole. Excluding F-Clip(HR) and LETR from Table [5
our full model (HAWP + Our full approach) on the York Urban dataset presents the best numbers at all metrics regardless of
with hole or without hole. Also, note that any of our full models consistently improves the ordinary detection performance
without hole against the corresponding basic framework.

F-scores in Table [6] show that at least one of the models enabling our approach performs better than its basic model at all
cases. It proves the effectiveness of applying at least one of our approaches, 3.2 (Conditional Training), 3.3 (RGB GAN) and
3.4 (Pseudo Labeling). Also, our model enabling all three approaches performs the best in general.

13

8. Extra Precision-Recall Curves
8.1. PR Curves for sAP!° on Tests in Table 1 of the Main Paper

PR curves for sAP'? on the tests with 0-10% hole in Table 1 of the Main Paper are shown in Figure|8| The red curve from
our full model shows a significant hole-robust performance improvement for both test sets.

PR Curve for sAP10 PR Curve for sAP10
—— L-CNN
0.97 "I 0.91 —— HT-LCNN
0.81 N 0.81 — F-Clip(HG2)
LETR ‘
0.7 1 \ :] 0.7 —— HAWP |
é 0.6 \\ | é 0.6 —— HAWP + Our full approach |
a 0.4{ — L-CNN \\ | a 0.4 |
| — F-Clip(HG2) ‘
03 i \\\ | 03 |
0.21 — HAWP \\ { 0.2 i
—— HT-HAWP \ \ |
0.-17 ___ Lr-HAWP + Our full approach N\ ‘ 0.1 N
0.0 T T T T T T T T T 0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall Recall
(a) Wireframe test set [5], 0-10% hole (b) York Urban [2]], 0-10% hole

Figure 8: PR curves for sAP'? on the tests with 0-10% hole in Table 1 of the Main Paper.

8.2. PR Curves for AP on Tests in Table 1 of the Main Paper

Figure |§| and Figure [10]show Precision-Recall curves drawn for AP on the tests with and without hole in Table 1 of the
Main Paper.

The gap between our full model’s curve and existing models’ curves is visibly large at 10-30% hole in both test sets as
shown in Figure 9] (a) and (c). The gap is still obvious in case of the Wireframe test set with 0-10% hole in Figure[9] (b). In
case of the York Urban dataset with 0-10% hole, it is not easy to tell from Figure |§| (d), but the APH number is better than all
others compared in the graph (see Table 1 in the Main Paper), and also, its corresponding PR curves for sAP'? in Figure (b)
show a clear superiority of our full model.

In the cases without hole in Figure it is again hard to tell from the graphs intuitively, but the AP number is better than
all others compared in either of these graphs (see Table 1 in the Main Paper).

14

0.91
0.81
0.71
5061

wn

S 0.51

(O]

& 0.4
0.3
0.2
0.11

PR Curve for APH

=
\\\

—

L-CNN
F-Clip(HG2)
LETR
HAWP

HT-HAWP \
HT-HAWP + Our full approach

0.0

0.

0010203040506 07 08 09
Recall

(a) Wireframe test set [5], 10-30% hole

PR Curve for APH

0.91
0.81
0.7

5061

%)

‘G 0.51
(0]

a 0.41
0.31
0.2
0.11

L-CNN
F-Clip(HG2)
LETR
HAWP
HT-HAWP \
HAWP + Our full approach

0.0

0.

0.91
0.81
0.71
5 0.6
20.51
£ 04
0.31
0.2
0.11

00102030405 0.6 07 08 0.9
Recall

(c) York Urban [2], 10-30% hole

0.9
0.81
0.71

50.6

50.51

£ 0.4/
0.31
0.2
0.1

PR Curve for APH

—_—
%\
\
\
\
\\
—— L-CNN W
—— F-Clip(HG2) \ |
LETR :
HAWP 8
—— HT-HAWP
HT-HAWP + Our full approach

0.0

0.0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9

Recall

(b) Wireframe test set [5]], 0-10% hole

PR Curve for APH

0.9
0.81
0.7

50.61

5 0.5

£04
0.3
0.2
0.1

—— L-CNN
—— F-Clip(HG2)

~—— HT-HAWP

Yo

AN

\
LETR \

HAWP \\

HAWP + Our full approach

0.0 " " : "
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

(d) York Urban [2]], 0-10% hole

Figure 9: PR curves for AP on the tests with hole in Table 1 of the Main Paper.

PR Curve for APH

L-CNN

F-Clip(HG2)

LETR

HAWP

—— HT-HAWP

HT-HAWP + Our full approach

0.0
0

.0 01 02 0.3 04 05 0.6 0.7 0.8 0.9
Recall

(a) Wireframe test set [3]], without hole

PR Curve for APH

0.91
0.8
ﬁ
0.71
_5 0.61
5051
9]
£o4 \
—— L-CNN {
0.31 — FcipHe2) \\\\ !
LETR
021 e |
0.1{ — HT-HAWP
—— HAWP + Our full approach

0.0 " " : "
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

(b) York Urban [2]], without hole

Figure 10: PR curves for APH on the tests without hole in Table 1 of the Main Paper.

15

8.3. PR Curves for sAP'° on Tests in Table 2 of the Main Paper

Figure and Figure show Precision-Recall curves drawn for the structural quality metric sAP'? with respect to
(a),(c),(e) and (f),(h),(j) cases tested in Table 2 of the Main Paper. Figureproves that compared to baselines (black curves),
our approach yet without pseudo labeling (red curves) is already significantly effective in improving hole-robustness, which
is even further improved with pseudo labeling (green curves). Figure [I2] proves that our approach helps slightly enhance
ordinary detection as well, and with pseudo labeling, the gain becomes more distinct.

8.4. PR Curves for AP on Tests in Table 2 of the Main Paper

Figure and Figure show Precision-Recall curves drawn for AP with respect to (a),(c),(e) and (f),(h),(j) cases tested
in Table 2 of the Main Paper. From these curves, we can again conclude as similarly as the PR-curves drawn for sAP'? in
Section [8.3]

16

PR Curve for sAP10 PR Curve for sAP10

0.91 0.9
0.8 0.8
0.7 0.7 1
50.6 50.61
5 0.5 0.5
(0] (0]
a 0.41 a 0.41
031 — Tab. 2. (f) 031 — Tab.2. (H
0.21 — Tab. 2. (h) 0.29 —— Tab. 2. (h)
0.1{ — Tab. 2. (j) 0.1{ — Tab. 2. (j)
o+ O et
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall Recall
(a) Wireframe test set [5], 10-30% hole (b) Wireframe test set [5]], 0-10% hole
PR Curve for sAP10 PR Curve for sAP10
0.91 0.9
0.8 0.8
0.7 0.7
§0.61 §0.6
5 0.5 505
(0] (O]
& 0.4 £ 0.4
031 — Tab. 2. (a) 031 — Tab. 2. (a)
02 — Tab. 2 (c)\ 027 — Tab.2.(c)\
0.11 —— Tab. 2. (e)N 0.11{ —— Tab. 2. (e)
0.0 T T T T T T T T T 0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall Recall
(c) York Urban [2], 10-30% hole (d) York Urban [2]], 0-10% hole

Figure 11: PR curves for sAP'? on the tests with hole in Table 2 of the Main Paper.

PR Curve for sAP10 PR Curve for sAP10
0.9 0.9
0.8 0.8
0.7 1 0.7
5061 5 0.6
[0) (O]
a 0.4 a 0.4
031 — Tab. 2. (9 031 — Tab. 2. (a)
029 — Tab. 2. (h) 0.27 — Tab. 2. (c)
0.1 — Tab. 2. (j) 0.1{ —— Tab. 2. (e)
0.0 T T T T T T T T T 0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall Recall
(a) Wireframe test set [3]], without hole (b) York Urban [2], without hole

Figure 12: PR curves for sAP'? on the tests without hole in Table 2 of the Main Paper.

17

PR Curve for APH

0.91
0.8
0.71
5056
3 0.5
(0]
a 0.4
031 — Tab. 2. (9
021 — Tab. 2. (h)
0.1{ — Tab. 2. (j)
O
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall
(a) Wireframe test set [5], 10-30% hole
PR Curve for APH
0.9
0.8
0.7 1
50.6;
5 0.51
(0]
& 0.4
031 — Tab. 2. (a)
029 — Tab. 2. (¢)
0.11 —— Tab. 2. (e)

0.0 . . . : : : . : .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

(c) York Urban [2], 10-30% hole

PR Curve for APH

0.9
0.8
0.7
5061
£0.51
(0]
a 0.44
031 — Tab. 2. (f)
0.21 — Tab. 2. (h)
0.1{ — Tab. 2. (j)
0.0 _—
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall
(b) Wireframe test set [5]], 0-10% hole
PR Curve for APH
0.9
0.81
0.7
5061
5 0.51
(O]
& 0.4
031 — Tab. 2. (a)
0.2 — Tab. 2. (¢)
0.11 —— Tab. 2. (e)

0.0 . . . : . : . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

(d) York Urban [2]], 0-10% hole

Figure 13: PR curves for APH on the tests with hole in Table 2 of the Main Paper.

PR Curve for APH

0.9
0.8
0.7

506

20.51

(0]

& 0.4
031 — Tab. 2. (f)

021 — Tab. 2. (h)
0.11 — Tab. 2. (j)

0.0 " " " " " " " " "
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

(a) Wireframe test set [3]], without hole

PR Curve for APH

0.9
0.8
0.7
5061
£0.51
()
& 0.41

031 — Tab. 2. (a)

021 — Tab. 2. (¢)
0.11 — Tab. 2. (e)

0.0 " " " " " " " " "
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

(b) York Urban [2]], without hole

Figure 14: PR curves for APH on the tests without hole in Table 2 of the Main Paper.

18

9. Initializing the Training with a Pretrained Ordinary Detection Model

Wireframe Test Set [5]
10-30% Hole 0-10% Hole without Hole
sAP’ sAP'" mAP’ APY | sAP° sAP'® mAP’ APY | sAP° sAP® mAP’ APY
(a): HAWP + 3.2 + 3.3 44.17 48.11 47.1 73.1 |57.99 62.35 58.2 82.9 | 62.60 66.60 60.5 85.1
+ Init w/ Pretrained 44.45 4826 47.1 72.5 |58.17 6234 58.1 82.6 | 62.89 66.69 60.4 84.8
(b): HT-HAWP + 3.2 + 3.3 4572 49.56 48.0 75.0 | 59.33 63.59 59.1 84.0 | 63.56 67.49 61.2 85.6
+ Init w/ Pretrained 46.24 49.89 48.0 74.9 | 60.05 64.12 59.1 83.9 | 64.19 67.90 61.2 85.6
York Urban Dataset [2]
10-30% Hole 0-10% Hole without Hole
sAP° sAP'" mAP’ APY | sAP° sAP'® mAP’ APY | sAP° sAP® mAP’ APY
(c): HAWP + 3.2 + 3.3 20.30 22.34 25.8 53.0 [24.90 27.35 31.2 60.6 | 26.69 29.08 324 62.3
+ Init w/ Pretrained 18.47 20.32 24.7 512 |23.18 25.34 29.3 58.7 | 24.62 26.76 30.5 60.4
(d): HT-THAWP + 3.2 + 3.3 19.44 2139 24.6 52.8 | 24.35 26.62 29.6 59.6 | 25.91 28.16 30.5 61.0
+ Init w/ Pretrained 19.91 21.92 25.6 53.0 | 24.27 26.60 29.8 58.3 |25.74 27.99 30.7 59.1

Table 7: Initializing the training with a pretrained ordinary detection model. For the tested models we combined our approach
3.2: ‘Conditional Training’ and 3.3: ‘RGB GAN’ on top of two basic frameworks HAWP [12] and HT-HAWP [[12,[7]. Default
training uses random initialization, which worked meaningfully better at (c). We see no clear difference at (a), (b) and (d).

We train a modified backbone network through our approach by initializing the kernel weights with random numbers as
stated in [4] (i.e., kaiming_uniform). In this section, we test an effect of initializing our modified backbone with pretrained
weights from the basic model made for ordinary detection without hole. Since the modified backbone network and the
original backbone network are architecturally different in some parts (see Section[2)), we copy the pretrained weights only for
those matching layers while initializing the rest through default kaiming _uniform.

Table[7] shows the results on this experiment. On the Wireframe test set [5], initializing with the pretrained weights was
slightly more helpful than full random initialization, but the difference was marginal. On the York Urban dataset [2]], training
with random initialization was much better in case of (c): HAWP + 3.2 + 3.3, while it is still unclear which initialization
method is better in case of (d): HT-HAWP + 3.2 + 3.3. This suggests that initialization with pretrained weights for the
baseline model does not have a clear benefit compared to random initialization, or could make it even worse. We suspect
that the reason is, 1) our models are not sensitive to initialization methods, and 2) our modified backbone learns different
information through the RGB GAN approach, which adds a generative role to the backbone network as part of a scene
contents generator, unlike the baseline backbone dedicated only to learn ordinary detection through sole supervision.

10. Robustness to a Dim or Over Lit Condition

In this section we test the robustness of our models to a dim or over lit condition that we may rarely but do encounter while
capturing a photo in real life. We simulated images captured under the dim or over lit condition by adjusting the original
source images in the Wireframe Test Set [15] as follows:

1. Linearizing the camera response (assuming gamma 2.2)
2. Randomly scaling the image value (assuming the original image value is within [0, 255])
11

» for dim lit: scale by a random s € [{55, 5] and truncate below 0.

0 8.
* for over lit: scale by a random s € [3.0, 3.3] and truncate above 255.
3. (dim lit only) Adding Poisson noise (shot noise), with peak A = 8.0

4. Reapplying the camera response (gamma 2.2)

19

Wireframe Test Set [5]

10-30% Hole 0-10% Hole without Hole
(@ (b) (c) sAP° sAP'® mAP’ APY | sAP° sAPY mAP’ APY | sAP° sAP!® mAP’ APY
Baseline HAWP v 34.80 37.74 40.8 64.5 [50.80 54.84 54.0 79.4 | 62.52 66.49 60.2 85.0

v 29.89 33.02 35.7 59.4 |44.05 48.25 47.8 74.1 | 54.74 59.08 54.1 799

v 12796 30.78 34.0 55.5|41.15 45.05 45.0 69.0 | 50.80 54.82 50.4 74.1

HAWP + Ours full v 47.59 51.50 49.6 74.9 | 61.83 6598 61.0 85.0 | 65.98 69.76 63.0 86.9
v 41.19 4523 444 69.9 | 54.09 58.53 549 80.2 |58.32 6247 57.0 82.1

v'|38.43 42.14 41.0 64.5|50.14 5430 50.5 73.5|53.74 57.59 523 755

Baseline HT-HAWP v 35.64 38.54 41.8 65.5|51.58 5550 55.1 80.1|63.26 67.12 61.3 85.7
v 29.80 32.85 35.6 59.6 | 43.76 48.02 47.8 744 |54.64 59.01 54.3 80.2

v |28.45 31.18 345 56.2|41.43 4516 457 69.8 | 51.03 54.81 51.2 74.6

HT-HAWP + Ours full v/ 48.02 51.82 49.9 76.6 | 62.21 66.31 61.3 85.5 | 66.19 69.92 63.2 87.0
v 41.52 4551 443 713 |54.24 58.92 547 80.4 |58.33 62.60 56.8 82.1

v | 38.85 4240 413 66.1 | 50.52 54.59 509 74.3 |53.95 57.75 52.6 75.8

(a): normal lit
(b): dim lit
(c): over lit

Table 8: Testing robustness to dim or over lit conditions. We compared the basic frameworks HAWP [12] and HT-HAWP
[12, 7] with those modified by applying our full approach.

(a) Normal lit : (b) Dim lit (c) Over lit (d) Ground Truth

Figure 15: Results on dim and over lit conditions. HT-HAWP [[12}[7] with our full approach was applied to detect wireframes
visualized in (a), (b) and (c).

Table El show results on this experiment. We compared the basic frameworks HAWP and HT-HAWP [7] with
those modified by applying our full approach. We found that the performance drop is more prominent in the over lit case than
the dim lit case, since the over lit scenario introduced stronger and larger saturated (white) regions than the dim lit one. Here,
a model with our full approach always performed far better than its corresponding basic model on the same input condition,
either without or with hole. Especially, with 10-30% hole, the model with our full approach applied to challenging over lit
images performed even better than the basic model applied to normal images. We suspect that our large scale training on the
pseudo-labeled data derived from diverse images may have helped improve the robustness of the model on unnatural lighting
conditions. Figure[T3]visualizes simulated images under a dim or over lit condition and detection results on them.

20

11. Testing Ordinary Detection Models on Inpainted Images

Wireframe Test Set [5] York Urban Dataset [2]
10-30% Hole 0-10% Hole 10-30% Hole 0-10% Hole
SAP> sAP" mAP’ AP"| sAP> sAP" mAP' AP" || sAP’ sAP" mAP' AP"| sAP’ sAP" mAP' AP"
(Detecting on images with hole)
L-CNN [13] 32.83 3578 404 613 | 47.73 51.68 532 753 14.65 16.16 21.9 44.6| 20.23 22.15 27.5 54.6
HT-LCNN 3356 3648 414 57.1| 48.89 5279 542 76.6 15.84 1748 235 404 | 2147 23.62 293 50.1
F-Clip(HG2) 1] 3351 36.68 / 65.3 | 49.46 5387 / 79.5 15.86 17.54 / 48.6 | 22.02 24.07 / 58.6
HAWP [12] 34.80 37.74 40.8 645 | 50.80 54.84 540 794 1579 1748 225 463 | 21.61 23.79 28.6 57.3
HT-HAWP [12][7] 35.64 38.54 41.8 65.5| 51.58 55.50 55.1 80.1 15.57 17.18 232 46.8 | 2145 23.63 29.0 56.6
(Detecting on inpainted images by applying [13])
L-CNN 39.01 42.84 45.0 70.5| 53.30 57.70 564 784 17.02 19.07 24.0 509 | 22.80 2492 29.1 56.8
HT-LCNN [13][7] 40.32 44.01 463 71.1 | 5470 59.04 57.6 795 18.27 2043 254 46.8 | 24.00 26.36 31.0 519
F-Clip(HG2) [T] 40.87 45.04 / 75.2 | 55.50 60.39 / 82.6 18.81 21.07 / 56.9 | 25.05 2743 / 60.7
HAWP [12] 41.82 45.67 457 737 | 56.61 61.10 57.1 828 18.53 20.61 24.5 53.7| 2432 26.70 30.2 60.1
HT-HAWP [12][7] 42.52 4632 467 743 | 5736 61.75 584 835 18.01 20.19 254 54.8 | 23.60 26.00 30.6 58.7
(Detecting on images with hole)
HAWP + Our full approach 47.59 51.50 496 749 | 61.83 6598 61.0 850 || 20.81 23.01 27.0 534 | 25.62 28.01 31.7 60.2
HT-HAWP + Our full approach | 48.02 51.82 49.9 76.6 | 62.21 66.31 61.3 855 || 19.96 21.92 254 529 | 2472 2694 298 57.6

Table 9: Testing existing works on images whose holes had been inpainted by applying a popular method Deepfillv2 [13]].
(Note that we excluded F-Clip(HR) [1]] and LETR [11]] from the comparison as they are fundamentally very different from
the other frameworks thus hard to be compared in parallel.)

(a) HT-HAWP with hole

(b) —HAWP on (©) Ors with hole (d) Gound Truth
inpainted input

Figure 16: Applying an ordinary detection model, HT-HAWP [12, 7], to images inpainted by using Deepfillv2 [13]. Artifacts
in the inpainted regions may still prevent proper inference of line segments as shown in (b). Ours: our full approach using
HT-HAWP as the basic framework. Hole size: 0-10% in the first row, 10-30% in the second and third rows.

21

In Table[9] we tested existing ordinary wireframe detection models on images whose holes had been inpainted by applying
a popular inpainting method Deepfillv2 [[13]. This does help improve the performance as shown in the second group of the
table. However, the inpainting result may not be perfect inside large holes such as those at 10-30%, which suffers from
crooked structure, disturbing artifacts or blurry completion. This abnormality may prevent proper inference of line segments
across the inpainted regions as shown in Figure [I6](b). We found that in general, our full approach using HAWP or our full
approach using HT-HAWP applied to non-inpainted images with hole still performs better than those existing models applied
to inpainted images.

22

12. More Qualitative Results

In this section, we show a more number of qualitative results and real-world examples that could not be put in the Main
Paper due to space.

12.1. Results on Standard Test Sets with and without Hole

We show extra results on the Wireframe test set 5] with 10-30% hole in Figure [I'7] and with 0-10% hole in Figure [I§] In
Figure@], we show extra results on York Urban dataset [2] with 10-30% and 0-10% hole. We show extra results on both test
sets without hole in Figure

These results are also from the same methods compared in Figures 6 and 7 of the Main Paper.

12.2. Real-world Examples with Occlusion by Foreground Objects

In Figures 21} 22] 23]and[24] we demonstrate additional qualitative results on real-world examples with obvious occlusion
by foreground objects. The example images were sampled and cropped (512x512) from the Places365 [14] Validation
set. We apply existing works HT-LCNN [15, [7], HT-HAWP [12, [7]], and F-Clip(HR) [[1] to an input image as is. We use
Detectron?2 [[10] panoptic segmentation (‘things’ only) to indicate the occluded region by a foreground object in the image,
and apply our hole-robust detection full model to it.

23

(a) HT-LCNN [15]7] (b) HT-HAWP [12][7] (c) F-Clip(HR) [1] (d) Our full approach (e) Ground Truth
using HT-HAWP [12][7]

Figure 17: Results on the Wireframe test set [5]] with 10-30% hole.

24

(a) HT-LCNN [13][7] ‘ (b) HT-HAWP [12][7] (c) F-Clip(HR) [T] (d) Our full approach (e) Ground Truth
using HT-HAWP [12][7]

Figure 18: Results on the Wireframe test set [5]] with 0-10% hole.

25

(e) Ground Truth

(d) Our full approach

_Clip(HR) [T]

(b) HT-HAWP [12][7] (c) F-

7

T-LCNN [15!

() H

T-HAWP [12]7]

using H

from 5th to 8th rows)

0-10%

s

30% from 1st to 4th rows

Figure 19: Results on the York Urban dataset [2] with hole. (10

26

(a) HT-LCNN [13![7] (b) HT-HAWP [12][7] (c) F-Clip(HR) [T] (d) Our full approach (e) Ground Truth
using HT-HAWP [[12]7]

Figure 20: Results on the Wireframe test set [3] (1st to 4th rows) and York Urban dataset [2] (5th to 7th rows) without
hole.

27

I‘f]’

I

1
I

(c) F-Clip(HR) [T] (d) Our full approach using HT-HAWP [12[7]

Figure 21: Results on real examples with occlusion by a foreground object (white vase on the bottom right corner). (a)-(c)
failed to detect wireframe vectors behind the foreground object. (d) The foreground object region from panoptic segmentation
[T0] is shown in transparent red color. Using this segmented region, we provided a pair of an image with hole and a mask
map (not shown above) to our full model. The hidden structures are well detected as shown in the visualized image.

28

(a) HT-LCNN [T5}[7] (b) HT-HAWP [12,[7]

P

(c) F-Clip(HR) [1] (d) Our full approach using HT-HAWP [12[7]

Figure 22: Results on real examples with occlusion by foreground objects (cup and beer can). (a)-(c) do not well detect
wireframe vectors behind the foreground objects. (d) The foreground object regions from panoptic segmentation [10] is
shown in transparent red color. Using these segmented regions, we provided a pair of an image with hole and a mask map
(not shown above) to our full model. The hidden structures are well detected as shown in the visualized image.

29

(a) HT-LCNN [151(7] (b) HT-HAWP [121[7]

(c) F-Clip(HR) [T] (d) Our full approach using HT-HAWP [12[7]

Figure 23: Results on real examples with occlusion by a large foreground object (toilet). (a)-(c) failed to detect wireframe
vectors behind the foreground object. (d) The foreground object region from panoptic segmentation [10] is indicated in
transparent red color. Using this segmented region, we provided a pair of an image with hole and a mask map (not shown
above) to our full model. The hidden structures are well detected as shown in the visualized image.

30

(a) HT-LCNN [15\ 7] (b) HT-HAWP [12,[7]

(c) F-Clip(HR) [1]

Figure 24: Results on real examples with occlusion by a foreground object (crouching person in black clothes, quite invisible
due to the black background). (a)-(c) do not well detect wireframe vectors behind the foreground object. (d) The foreground
object region from panoptic segmentation [[10] is indicated in transparent red color. Using this segmented region, we provided

a pair of an image with hole and a mask map (not shown above) to our full model. The hidden structures are well detected as
shown in the visualized image.

31

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

Xili Dai, Xiaojun Yuan, Haigang Gong, and Yi Ma. Fully convolutional line parsing. arXiv preprint arXiv:2104.11207, 2021.
Patrick Denis, James H Elder, and Francisco J Estrada. Efficient edge-based methods for estimating Manhattan frames in urban
imagery. In European Conference on Computer Vision (ECCV), pages 197-210. Springer, 2008.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS), 2014.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 1026—1034, 2015.
Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding, Shenghua Gao, and Yi Ma. Learning to parse wireframes in images of man-
made environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 626-635,
2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5967-5976, 2017.

Yancong Lin, Silvia L Pintea, and Jan C van Gemert. Deep Hough-transform line priors. In European Conference on Computer
Vision (ECCV), pages 323-340. Springer, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks.
In International Conference on Learning Representations (ICLR), 2018.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In European Conference on
Computer Vision (ECCV), pages 483—499. Springer, 2016.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. 2019. URL
https://github.com/facebookresearch/detectron2, 2(3), 2019.

Yifan Xu, Weijian Xu, David Cheung, and Zhuowen Tu. Line segment detection using transformers without edges. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4257-4266, 2021.

Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia, Liangpei Zhang, and Philip HS Torr. Holistically-attracted wireframe
parsing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2788-2797, 2020.
Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form image inpainting with gated convolution.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2019.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image database for scene
recognition. /IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6):1452-1464, 2017.

Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe parsing. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 962-971, 2019.

32

