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1. Factor Formulation for SIGNAV

In this section, we describe the details of the factor graph
formulation for SIGNAV.

Factor graphs [4] are graphical models that are well
suited to modeling complex estimation problems, such as
SLAM (Simultaneous Localization and Mapping). A factor
graph represents the joint probability distribution as a bipar-
tite graph G = (F, X, E) with two node types: factor nodes
fi € I and state variable nodes z; € X. Anedgee;; €
exists if and only if factor f; involves state variables x;.

There are two kinds of state variable nodes in our for-
mulation for SLAM systems: The navigation state nodes
includes the platform information (such as pose and veloc-
ity) at all given time steps, while the landmark states en-
codes the estimated 3D position of external visual land-
marks. We define the navigation state of the platform at
time ¢ as x; = (p;,v;, b;). Each state x covers three kinds
of nodes: the pose node p includes 3D translation t and
3D rotation R, the velocity node v represents 3D veloc-
ity in the world coordinate system, and b denotes sensor-
specific bias block which are varied for different sensors.
Note that the 3D rotation R represents the rotation from the
world coordinate system to the local body’s coordinate sys-
tem, while the 3D translation t represents the position of
the local coordinate system’s origin in the world coordinate
system. Pose node and velocity node are included in every
navigation state, while sensor-specific bias block are prop-
agated only through the navigation states which have mea-
surements from the correspondent sensor. To simplify the
notation, we assume all sensors have the same center (i.e.
calibrated in such a way), which is the origin of the body
coordinate system.

Sensor measurements are then formulated into factor
representations. The connectivity of each factor - how the
factor node connects to correspondent state nodes - is de-
cided based on how a measurement affects the appropriate
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state variables. For example, a GPS position measurement
only involves a navigation state x at a single time. A cam-
era feature observation can involve both a navigation state
x and a state of unknown 3D landmark position 1.

Our framework represents a sensor measurement as a
factor affecting state variables. A generative model

zi = hi(X;) + w; (D

predicts a sensor measurement z; using a function h;(X;)
with measurement noise w;.

There are many efficient solutions to solve the inference
process using this factor graph representation for real-time
SLAM systems. One popular solution is iSAM2 [3]], which
uses a Bayes tree data structure to keep all past information
and only updates variables influenced by each new measure-
ment. For the details on the factor graph representation and
its inference process for SLAM systems, we refer to [1]].

SIGNAV fuses sensor measurements from four sensor
modalities (IMU, cameras, LiDAR, and wheel odometry)
for navigation using this factor graph framework as follows.

1.1. IMU

A single factor typically encodes only one sensor mea-
surement. However, IMU sensors produce measurements at
a much higher rate than other sensor types. Therefore, we
formulate a single factor to summarize multiple consecutive
IMU measurements between two navigation states. A nav-
igation state is only created at the time when a non-IMU
measurement comes, and a binary factor is built to connect
two sequential navigation states by integrating IMU mea-
surements between them:

zi = hi(xi—1, ;) + w;. ()

We formulate this factor using a pre-integrated IMU
mechanism [2]. The IMU factor generates 6 degrees of
freedom relative pose and corresponding velocity change
between time ¢ — 1 and 4. It also tracks the IMU-specific
bias as part of the state variables, assuming a random-walk



model for the IMU bias evolution. This way avoids the dy-
namic modeling of the complex kinematics associated with
chaotic or rapid movements, and replaces the system dy-
namics with a motion model derived from IMU propaga-
tion. The error dynamics evolve with lower frequency and
thus make estimation equations better suited for lineariza-
tion. It allows for better handling of the uncertainty propa-
gation through the whole system.Therefore, the IMU factor
also provides the linearization point for the navigation state
at the current time ¢ which is necessary for all other factors
to be linearized. In contrast to tradition filtering techniques,
the IMU motion factor is part of the nonlinear optimization
leading to improved accuracy, while we avoid the burden of
repeated integrations by using IMU pre-integration.

1.2. Camera

In our system, tracked visual features extracted from
camera images are modeled by an extrinsic factor type. This
extrinsic factor estimates both navigation states and the 3D
location of the associated visual landmark. The measure-
ment model for the extrinsic factor between the landmark
state 1 and the pose state x; is:

Zi = hz<.’lﬁl) + w; = P’I"Oj(Ri(l — tl)) + w;, 3)

where z is the normalized pixel describing the projection of
the 3D landmark 1 onto the camera at time ¢, the platform
pose p; = (R;, t;) from x; is used to transform the landmark
to the local (camera) frame, and w; is the pixel noise. The
function Proj(m) is the function that projects a 3D point
m onto the image plane.

For the details of the linearized model and the corre-
sponding Jacobian matrices, we refer the reader to [3]).

1.3. LiDAR

SIGNAV registers 3D LiDAR points obtained from se-
quential scans (scan-to-scan registration). A 3D related
pose measurement across sequential scans is then generated
and formulated as a binary factor which involves only pose
nodes p;_1 and p;.

zi = hi(zi—1, ;) + w;, 4

where the function h extracts the 3D pose p from the state
2. The detailed formulation of the Jacobian is in [3]].

1.4. Wheel Odometry

We utilize each wheel odometry measurement as a 3D
velocity vector. Specifically, this measurement reports the
3D velocity of the moving platform in the world coordinate
system at the current time. It is formulated as a unary factor
to the velocity node v; in current state x;. This factor is
modeled as follows:

zi = hi(z;) + w;, &)
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Figure 1. The 3D maps generated from SIGNAV in Scenario 3:
(left) the 3D map, and (right) the 3D semantic map. Different
colors in the 3D semantic map represent different semantic classes.

where the function h extracts the 3D velocity from the state
x;. The linearized model, including the measurement Jaco-
bian H can be simply computed as:

0z = H(S’Ui + w, H= |3><3. (6)

2. Additional 3D Mapping Results

In the paper, due to page limitation, we are only able to
include the 3D maps from three (Scenario 1, Scenario 2,
Scenario 4) of four scenarios conducted by SIGNAV. Here
we show the 3D maps (Figure[T)) constructed from Scenario
3. This scenario is to navigate across two conference rooms
(conduct two loops - with partially different routes - in each
room): one room is totally dark (right room), while the other
room has little light from outside (left room). From the vi-
sualization of the 3D map, we can see the chairs (red color
in the semantic map in Figure[I) are reconstructed and sep-
arated nicely in the dark room.
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