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A. Implementation Details
In our experiments, all images are normalized and re-

shaped to 129 × 129 pixels. For pseudo pixel-level label
generation, we choose the VGG-16 [8] network as the CAM
backbone, with weights pre-trained over a reduced subset
of ILSVRC 2012 [5] with categories in Cbase and Cnovel re-
moved (the number of training classes NCAM = 894). For
semantic labels, we use the word embedding vectors pre-
trained on Wikipedia using fastText [1], which has a dimen-
sion of 300.

The decision rule from T to M̃ is defined as

M̃(x,y) =


c, if T (x,y) ≥ τ1 and Φ(x,y) ≥ τ2
0· , if T (x,y) < τ1 and Φ(x,y) < τ2

‘uncertain’, otherwise

,

where Φ ∈ [0, 1]H×W is the saliency map generated by
DSS [3], which is a saliency detection model pre-trained
over MSRA-B [4] with only foreground/background infor-
mation observed (without categorical supervision). The
thresholds are selected via cross-validation (we have τ1 =
0.2 and τ2 = 0.8). For images containing multiple cate-
gories, pixels identified with more than one foreground la-
bels are also assigned ‘uncertain’. Both the CAM heatmap
outputs and the saliency maps are 1/4 the size of the in-
put image, while the generated pseudo labels are upsampled
back to the original size.

For the segmentation model, we use a DeepLabv3+ [2]
pre-trained over irrelevant categories with ResNet-101
as backbone, which remains fixed throughout the meta-
learning process. The final classification layer is removed
so that it outputs downscaled 304-dimensional pixel-wise
feature maps of 1/2 the input size (i.e. d = 304). Note that
the descriptions in Section 3.3 of our main paper assumed
that the feature maps have the same dimension as the input
images for the sake of brevity. The encoder E is a mul-
tilayer perceptron with two hidden layers, and the output
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Figure 1: Performances of support pixel sampling with
varying ns on PASCAL-5i. Note that ns denotes the num-
ber of support pixels sampled from each category for se-
mantic segmentation.

dimension (for the latent space) is set to 64. The model is
trained by iterating a total of 30,000 episodes with an initial
learning rate of 10−3, which decreases by a factor of 0.5
every 5,000 iterations.

All experiments are implemented by PyTorch, and are
run using a single NVIDIA Titan RTX graphics card with
24GB of video memory.

B. Additional Quantitative Results
B.1. Effects on Support Pixel Sampling

As introduced in Section 3.3 of the main paper, our meta-
learning model produces pseudo pixel-level labels for the
support images. Instead of taking all the masked pixels for
learning purposes, we randomly sample a fixed number (ns)
of features from each category and form the associated sup-
port pixel features, which guide the segmentation of query
inputs. We now study the effect of the sampled feature num-
bers ns. As shown in Figure 1, despite the performance
generally increased with larger ns, such improvements be-
came marginal with ns above 200. Thus, we set ns as 200



Method 5-shot

Split-0 Split-1 Split-2 Split-3 Mean ∆

1-way
Co-att [6] 45.9 65.7 48.6 46.6 51.7 —
AMP [7] 41.8 / 13.6 55.5 / 18.0 50.3 / 11.0 39.9 / 16.2 46.9 / 14.7 32.2

PANet [10] 51.8 / 38.7 64.6 / 44.4 59.8 / 39.5 46.5 / 28.2 55.7 / 37.7 18.0
PFENet [9] 63.1 / 51.4 70.7 / 51.8 55.8 / 43.3 57.9 / 32.5 61.9 / 44.8 17.1

Ours 41.6 / 40.2 61.1 / 55.4 56.7 / 49.4 42.9 / 37.3 50.6 / 45.5 5.1
2-way

PANet [10] 53.1† / 35.3 53.1† / 44.9 53.1† / 37.8 53.1† / 28.2 53.1 / 36.6 16.5
Ours 41.4 / 37.4 57.9 / 52.6 55.1 / 45.6 42.9 / 36.6 49.3 / 43.0 6.3

Table 1: Split-wise performance of 5-shot tasks evaluated on PASCAL-5i in terms of mean-IoU.

Method 5-shot

Split-0 Split-1 Split-2 Split-3 Mean ∆

1-way
PANet [10] 29.7† / 25.1 29.7† / 12.0 29.7† / 9.1 29.7† / 9.3 29.7 / 13.9 15.8

Ours 31.0 / 24.2 23.1 / 13.4 30.5 / 21.1 23.4 / 11.2 27.0 / 17.5 9.5
2-way
Ours 22.8 / 21.2 16.2 / 10.0 11.5 / 10.5 8.9 / 6.0 14.8 / 11.9 2.9

Table 2: Split-wise performance of 5-shot tasks evaluated on MS COCO in terms of mean-IoU.

Cpre

Cnovel 1-way 1-shot 1-way 5-shot
Split-0 Split-1 Split-2 Split-3 Split-0 Split-1 Split-2 Split-3

Split-0 — 47.5 42.4 31.1 — 54.6 47.2 34.0
Split-1 36.5 — 45.9 35.6 40.2 — 49.4 37.3
Split-2 34.8 51.5 — 34.7 38.1 55.0 — 31.6
Split-3 35.6 51.7 42.5 — 38.5 55.4 45.8 —
Max 36.5 51.7 45.9 35.6 40.2 55.4 49.4 37.3
µ 35.6 50.2 43.6 33.8 38.9 55.0 47.4 34.3
σ 0.84 2.39 1.99 2.40 1.13 0.41 1.79 2.86

Table 3: Performance evaluation with different pre-training categories for DeepLabv3+ on PASCAL-5i in terms of mean-IoU
under the proposed weakly supervised setting. Note that Cpre and Cnovel denote the pre-training split for DeepLabv3+ and the
testing split, respectively.

Cpre

Cnovel 1-way 1-shot 1-way 5-shot
Split-0 Split-1 Split-2 Split-3 Split-0 Split-1 Split-2 Split-3

Split-0 — 53.7 49.3 35.7 — 58.5 55.5 39.2
Split-1 38.3 — 54.0 40.1 41.6 — 56.7 42.9
Split-2 38.2 55.4 — 33.8 41.3 58.6 — 36.6
Split-3 37.1 57.6 50.0 — 40.6 61.1 53.4 —
Max 38.3 57.6 54.0 40.1 41.6 61.1 56.7 42.9
µ 37.9 55.6 51.1 36.6 41.1 59.4 55.2 39.6
σ 0.68 1.93 2.55 3.20 0.52 1.48 1.70 3.19

Table 4: Performance evaluation with different pre-training categories for DeepLabv3+ on PASCAL-5i in terms of mean-IoU
under the fully supervised setting. Note that Cpre and Cnovel denote the pre-training split for DeepLabv3+ and the testing split,
respectively.



in our work. It is worth pointing out that this is evident on
both 1 and 5-shot tasks on PASCAL-5i. This indicates that
our model is able to exploit representative information from
the pseudo masks of few images, guiding the segmentation
of query images in the weakly supervised settings. We note
that in the case where the number of total support pixels
from a category is less than ns, we would use all support
pixels from that category.

B.2. Split-wise Evaluation

In our main paper, we presented quantitative results eval-
uated on two datasets (PASCAL-5i and MS COCO) in
terms of the average of mean-IoUs for 4 different splits. We
now provide split-wise mean-IoUs for 5-shot tasks (which
were not included in the main paper due to space limits),
as also reported in previous works in the few-shot seman-
tic segmentation literature. The results for PASCAL-5i are
shown in Table 1, while those for MS COCO are shown in
Table 2. The numbers before and after ‘/’ indicate results
under fully and weakly supervised settings, respectively.
∆ denotes the performance drop between the two settings.
Note that [6] considers a loosely weakly supervised setting
and requires ground truth pixel-level masks during training,
while [9] utilizes a stronger backbone (ResNet-50) com-
pared to others (VGG-16).

B.3. Pre-training Categories for DeepLabv3+

As mentioned in our main paper, our proposed weakly
supervised setting remains valid as long as the DeepLabv3+
backbone in our network is pre-trained using irrelevant cat-
egories (i.e., classes that are neither present in Cbase nor
Cnovel). We have already shown in the ablation study that
the performance achieved by our framework is not a direct
result of a strong backbone. Here, we provide more insight
into the effect of the backbone by minimizing the number
of pre-training categories used by our DeepLabv3+. Specif-
ically, in each experiment of the PASCAL-5i dataset, we
use one out of the three training splits as the pre-training
categories for DeepLabv3+ (denoted as Cpre), while the re-
maining two are utilized as Cbase. This means that for each
testing split, we are able to construct three different exper-
imental setups and thus obtain three separate mean-IoU re-
sults.

In Tables 3 and 4, we report the mean-IoU of each test-
ing split using different pre-training splits for DeepLabv3+
under weakly and fully supervised settings, respectively.
As evident in the results, the performance does not exhibit
drastic fluctuations despite using different sets of Cpre. We
specifically point this out by highlighting the column-wise
standard deviations (last row of Table 3 and 4), which are
reasonably low and negligible compared to the performance
gap between our proposed method and previous works, as

†Split-wise results not reported in the original paper.

reported in Tables 1 and 2. This further shows that our
model is robust against backbones pre-trained with differ-
ent or even a minimal number of categories (|Cpre| = 5 in
our case).
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