
Supplementary Material: Contextual Gradient Scaling for Few-Shot Learning

Method miniImageNet
1-shot 5-shot

MAML [3] 58.37± 0.49% 69.76± 0.46%
BOIL [7] - 71.30± 0.28%
L2F [2] 59.71± 0.49% 77.04± 0.42%

ALFA [1] 59.74± 0.49% 77.96± 0.41%
CxGrad (Ours) 60.19± 0.45% 75.17± 0.40%

Table 1: Test accuracy on 5-way miniImageNet classifica-
tion.

A. Experiment Settings
Our implementation and experiment settings are based

on those of ALFA [1]. In all the experiments, The net-
work architecture is 4 convolutional blocks [9] followed by
a fully connected layer. Each block consists of a convolu-
tional layer with 3×3 kernel, a batch normalization layer,
a ReLU activation function, and a 2×2 max-pooling layer.
The dimension of the context parameters and the dimension
of the intermediate features in gϕ are both 100. The dimen-
sion of the outputs of gϕ is same as the number of convo-
lution layers in the backbone. In Qi, each class contains 15
samples. None of the data-augmentation methods are used
in training. The batch size B is 4 for 1-shot and 2 for 5-shot.
We optimize the model in the inner-loop for 5 steps and set
the learning rates α, β, and η to be 0.01, 1.0, 0.001, respec-
tively. Adam [6] is used as the meta-optimizer in outer-loop.
Our model is trained for 50,000 iterations on miniImageNet
and 125,000 iterations on tieredImageNet. An ensemble of
models, whose ranks are top 5 in terms of meta-validation
accuracy, is evaluated on 600 tasks from meta-test set. We
run 3 independent runs with 3 different seeds and report the
average results.

B. Experimental Results on a Bigger Backbone
In this section, we provide additional experimental re-

sults on a deeper backbone, especially ResNet-12 [4].
ResNet-12 consists of 4 residual blocks. Each residual block
is composed of three convolutional blocks, each of which
consists of a convolutional layer, a BN layer, and a ReLU
activation function. A pointwise convolutional block is po-
sitioned at the skip connection for matching the number

Method tieredImageNet
1-shot 5-shot

MAML [3] 58.58± 0.49% 71.24± 0.43%
L2F [2] 64.04± 0.48% 81.13± 0.39%

ALFA [1] 64.62± 0.49% 82.48± 0.38%
CxGrad (Ours) 65.47± 0.44% 82.52± 0.35%

Table 2: Test accuracy on 5-way tieredImageNet classifica-
tion.

of channels between the residual inputs and the outputs. A
2×2 max-pooling layer is at the end of each residual block.
The number of channels begins with 64 and gets doubled by
each residual block. Finally, we aggregate the spatial dimen-
sion of the final representation by a global average pooling
layer and pass it to the classifier. For ResNet-12, we apply
the scaling process for all the residual blocks. More specif-
ically, in each residual block, we only scale the weights for
the three convolutional blocks, not for the pointwise con-
volutional block. Table 1 and Table 2 provide 5-way few-
shot classification performance using ResNet-12 on mini-
ImageNet and tieredImageNet, respectively.

C. Optimization Landscape

Ioffe [5] argued that batch normalization helps the train-
ing by reducing internal covariate shift (ICS). However,
Santurkar [8] found that the true reason is that batch nor-
malization smooths the optimization landscape in training.
In other words, batch normalization improves the Lipschitz-
ness of both the loss and the gradients of a model. To prove
this argument, he measured the variation in loss, gradient
predictiveness, and “effective” β smoothness in the vicinity
of a certain point on the optimization landscape. For more
details, please refer to Section 3 in [8]. Based on this study,
Baik [2] analyzed the optimization landscape of MAML
and his method L2F. Likewise, in this section, we also ana-
lyze how our method affects the optimization landscape in
the inner-loop following [2, 8]. In Figure 1, we plot these
three measurements and explain the meaning of each one.

In order to analyze the optimization landscape in the
inner-loop, we have to observe the loss and the gradients
in the vicinity of the model parameters adapted to Ti. To
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Figure 1: Optimization landscape during adaptation. Like other experiments, we plot these results from 5-way 5-shot mini-
ImageNet few-shot classification. In order to analyze the landscape, we update the model parameter from a certain inner-loop
step with various range of learning rates. We refer to these updated parameters as points. With these, we can analyze the local
landscape from the certain step. (a) We measure the variation in loss calculated at the points. (b) We measure the variation in
ℓ2 distance between the gradients at the certain step and at each point. (c) “effective” β smoothness refers to the maximum
ℓ2 difference of (b) over distance as we move to the corresponding point from the certain step.

accomplish this, we perform adaptation with a new learn-
ing rate set in [0.5, 4] × α. We set α = 0.01 as before. Let
the new learning rate set A = {x|x = 0.5αi, i ∈ [8]}, j-
th learning rate of A be ᾱj , and θi,s be the parameters of
the adapted model to Ti at s-th step in the inner-loop. Then,
we can compute several model parameters around θi,s as
below:

θ
ᾱj

i,s = θi,s − ᾱj∇θi,s
L(θi,s;Si) (1)

Next, let B denote the batch size and S denote the number
of inner-loop steps. We plot the variation in the loss and the
gradient predictiveness computed by Eq. (2) and Eq. (3) in
Figure 1a and Figure 1b, respectively.
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where h(θi) = ∇θiL(θi;Si). In Figure 1c, we calcu-
late the values by Eq. (4) and plot them. Here, ᾱ∗
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Looking at Figure 1a, we can observe the loss landscape
in the inner-loop as the training proceeds. In the case of
MAML, the variation in loss becomes larger from approx-
imately 5,000 iterations. It means that the loss landscape

gets sharper in the vicinity of the points on it. On the con-
trary, in the case of CxGrad, the variation in loss is drasti-
cally reduced, implying that CxGrad efficiently and effec-
tively smooths the loss landscape. In Figure 1b, gradient
predictiveness means how far the gradients around a certain
point are from the gradient at the point. The farther the dis-
tance, the lower the stability. At the beginning of training,
CxGrad is more unstable than MAML in terms of gradients
because the sub-network gϕ doesn’t learn sufficient knowl-
edge from tasks to scale the gradients of the backbone in
a task-wise manner. Nevertheless, CxGrad retains enough
stability in no time. Lastly, in Figure 1c, CxGrad shows bet-
ter Lipschitzness than MAML. It means that CxGrad also
smooths the gradients besides the loss. As a result, CxGrad
improves both the convergence speed and the performance
of the model.
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