
This is the supplementary material for paper ”EZCrop:
Energy-Zoned Channels for Robust Output Pruning”. It
covers the following contents:

• The detailed proof of Theroem 1. (Appendix 1)

• Additional 3D plots to visualize the convolution process
and the energy distribution of the feature maps in the
frequency domain. (Appendix 2.1)

• The details of how to define and draw the circle energy
zone in the frequency domain. (Appendix 2.2)

• Discussion on the effectiveness of rank-based and
energy-based metric. (Appendix 3)

• Simple examples to illustrate how to find the square
energy zone when the given feature map is not of a
regular shape. (Appendix 4.1)

• The pseudocode of EZCrop. (Appendix 4.2)

• Training details of the experiments. (Appendix 5)

• Additional experimental results. (Appendix 6)

• Run the codes. (Appendix 7)

1. Convolution in the Frequency Domain
Theorem 1. For a single 3-D input X ∈ RS×H×W and
a CONV layer with a 4-D kernel tensor K ∈ RD×D×S×T ,
their convolution result Y ∈ RT×H×W can be formalized
as:

Y [j, :, :] =

S∑
i=1

F−1(F(K̂[:, :, i, j])�F(X [i, :, :])), (1)

where� stands for the point-wise multiplication (also called
Hadamard product), and K̂ ∈ RH×W×S×T is the expanded
filter, whose slices K̂[:, :, i, j] are all doubly circulant matri-
ces generated by the torus form of K[:, :, i, j].

Proof. Figure 1 demonstrates the relations among equations,
which helps understand the proof process.

Circulant Matirx and its Decomposition We define
F ∈ Cn×n to be the Discrete Fourier Transform (DFT)
matrix with Fij = ωij (w = e−

2πi
n with i2 = −1, this i

appears here only once and is not to be confused with the
index i in other places),

F =



1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . .

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


, (2)

and we use [n] to dente the set 0, 1, . . . , n− 1.
To ease illustration, we normalize the columns of F to

unit length by defining the unitary matrix Q = 1√
n
F such

that QQ∗ = Q∗Q = I with I ∈ Rn×n being the identity
matrix. A circulant matrix A ∈ Rn×n is fully characterized
by its first column (row), followed by successive bottom-up
(right-left) cyclic shifts. Specifically, let

A =


a0 an−1 . . . a1

a1 a0
. . .

...
...

. an−1
an−1 . . . a1 a0

 , (3)

C =


0 0 . . . 1

1 0
. . .

...
...

. 0
0 . . . 1 0

 , (4)

then with A[:, j] denoting the jth column of A, and noting
we start counting from 0, we have

A[:, j] = CjA[:, 0] for j ∈ [n]. (5)

It is well known that A has a fixed set of eigenvectors
(up to scaling) solely determined by its circulant structure,
namely,

AQ∗ = Q∗Λ where Λ = diag(FA[:, 0]). (6)

By scaling both sides with
√
n we get AF ∗ = F ∗Λ

though we will stick to Eq. 6 for consistency. This implies

A = Q∗ΛQ = Q̄ΛQ and Λ = QAQ∗ = QAQ̄. (7)

Using tensor mode product notation [2], Eq. 7 can be
expressed as A = Λ×1 Q

∗ ×2 Q
T = Λ×1 Q

∗ ×2 Q since
Q is symmetric, and similarly, Λ = A ×1 Q ×2 Q

∗. Such
eigen-decomposition of a circulant A can be used to speed
up the matrix-vector product y = Ax, where x, y ∈ Rn, via

y = Ax = Q∗ΛQx =
1

n
Fdiag(FA[:, 0])Fx. (8)

Using the definitions F1(v) := Fv and F−11 (v) := 1
n F̄ v,

and that diag(u)v = u� v, Eq. 8 can be computed by

y = F−11 (F1(A[:, 0])�F1(x)). (9)

Single-Channel Convolution Circulant matrices arise
naturally in the analytical derivations of convolutional neu-
ral network (CNN) operations. We use a toy example with
one input channel and one output channel for easy illustra-
tion. Here X,Y ∈ R4×4, W ∈ R3×3 are the input channel,

1

Figure 1. The road map about how we prove Theorem 1.

output channel and kernel filter, respectively.
y00 y01 y02 y03
y10 y11 y12 y13
y20 y21 y22 y23
y30 y31 y32 y33



=


x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

 ∗
 w00 w01 w02

w10 w11 w12

w20 w21 w22

 .

(10)

We assume circulant padding, namely, surrounding the
inputX with eightX’s around it. It is obvious that one-pixel
expansion (padding) around the four sides of X is implied
to equate the input-output dimensions. Now, if we vectorize
X and Y and write out the the linear mapping relating them,
we get

vec(Y) = (y00, y10, y20, y30| . . . |y03, y13, y23, y33) , (11)

vec(X) = (x00, x10, x20, x30| . . . |x03, x13, x23, x33) , (12)

vec(Y) = Bvec(X), (13)

where B is a doubly circulant matrix as shown in Figure 2,
and represents the flattened filtering matrix arising from W.

Next, we tensorize B into a 4-way tensor B whose modes
are marked by the axes i1 to i4 as in Figure 2. It can be seen
that the dimension of each axis is 4 and i1, i2, i3, i4 ∈ [4].
The doubly circulant property refers to 1, 2-circulant and
3, 4-circulant. Similar to Eq. 5, it can be easily verified that
the cyclic shift holds true for each circulant mode pair

B[:, i2, :, i4] = B[:, 0, :, 0]×1 C
i2 ×3 C

i4 for i2, i4 ∈ [4], (14)

where the shifting matrix C is assumed appropriately sized.
Moreover, using results from [6], a totally diagonal 4-way
tensor Ω can be obtained from

Ω = B ×1 Q×2 Q
∗ ×3 Q×4 Q

∗, (15)

which in turn suggests B = Ω×1 Q
∗ ×2 Q×3 Q

∗ ×4 Q.
We now focus on B[:, 0, :, 0] which consists of entries in

the first column in B and forms a 2-way tensor (viz. a matrix)

along i1 and i3. We denote this matrix by Ŵ that spans the
i1 and i3 axes of B, namely,

Ŵ = B[:, 0, :, 0] =


w11 w10 0 w12

w01 w00 0 w02

0 0 0 0
w21 w20 0 w22

 , (16)

and Ŵ is called torus form of W .

Analogous to Eq. 6, the diagonal entries in Ω can be
found from B[:, 0, :, 0]×1 F ×3 F = FŴFT which is ex-
actly the 2D-FFT of Ŵ . In particular, the diagonal entries in
Ω can also be regarded as the diagonal entries after diagonal-
izing the matrix B in Figure 2, which are the 16 entries in
vec(FŴF). By unvectorizing vec(Y) and vec(X) in Eq. 11
and 12 back to matrices, we have the 2D counterpart to Eq. 9

Y = F−1(F(Ŵ)�F(X)). (17)

An intuitive view of Eq. 17 is that a multiplicative mask
F(Ŵ) is applied to the 2D FFT of the input X.

Multi-Channel Convolution When given a single 3-D
input X ∈ RS×H×W and a CONV layer with a 4-D kernel
tensor K ∈ RD×D×S×T , each slice of X , namely, X [i, :
, :] is equivalent to the X in Eq. 17. Besides, the torus
form of each slice K[:, :, i, j] in K is equal to the Ŵ in
Eq. 17, denoted as K̂[:, :, i, j]. Figure 3 shows how X does
convolution with a single filter K[:, :, :, j] in the frequency
domain. The process can be formalized as

Y [j, :, :] =

S∑
i=1

F−1(F(K̂[:, :, i, j])�F(X [i, :, :])). (18)

Theorem 1 is proved.

2

11 21 01 12 22 02 10 20 00

01 11 21 02 12 22 00 10 20

01 11 21 02 12 22 00 10 20

21 01 11 22 02 12 20 00 10

10 20 00 11 21 01 12 22 02

00 10 20 01 11 21 02 12 22

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

00 10 20 01 11 21 02 12 22

20 00 10 21 01 11 22 02 12

10 20 00 11 21 01 12 22 02

00 10 20 01 11 21 02 12 22

00 10 20 01 11 21 02 12 22

20 00 10 21 01 11 2

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w 2 02 12

12 22 02 10 20 00 11 21 01

02 12 22 00 10 20 01 11 21

02 12 22 00 10 20 01 11 21

22 02 12 20 00 10 21 01 11

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

w w w w w w w w w

i1

i3

i2
i4

Figure 2. Matrix B and its tensorization into the 4-way tensor B. The index pair {i1, i2} addresses entries within each block, whereas
{i3, i4} indexes the blocks.

Figure 3. Multi-Channel Convolution in the frequency domain. K̂
is the expanded version of K. By adding up all the convolution
results between the two corresponding matrices along the S-axis,
we get one slices Y[j, :, :] of the output.

2. Constant Ranks in Feature Map: A
Frequency-Domain Perspective

2.1. Visualize Convolution in the Frequency Do-
mian

In the main paper, we visualize the convolution in the
frequency domain for VGGNet, a neural network with a plain
structure. In this section, we show more visualization results
for neural networks with special structures: 1) ResNet-56
with residual blocks (Figure 4), and 2) DenseNet-40 with
inception modules (Figure 5). It can be observed that the
relations between rank and energy distribution are similar in
the three kinds of neural networks. The filter with a large
corresponding rank is expected to generate feature maps
with dispersed energy distribution in the frequency domain.
The consistency of the observations for VGGNet, ResNet-56,
and DenseNet-40 show the ability of EZCrop to be applied

to different network structures.

2.2. Energy in the Circle

In this section, we give the details of how we draw the
circles. Figure 6 shows an example using feature map of
size 8 × 8, and displays three circles with radii 1, 2 and
3, respectively. In short, we start from the DC center and
expand the energy-zone outward in a diamond shape. The
distance from the center of the DC center to the diamond’s
vertex is defined as the radius. The ratio of the sum of the
elements in the diamond area to the sum of all the feature
map elements is fixed, and we set the ratio in the main paper
as 70%. In fact, we use an energy-zone of diamond shape,
and the circles are employed for better visualization. When
fixing the ratio, the process to find the radii of the circles can
be formalized as below:

min
R
j
i [b]

S(Rj
i [b])

S(Ej
i [b, :, :])

≥ α,Rj
i =

1

B

B∑
b=1

Rj
i [b], (19a)

Ej
i [b, :, :] = abs(fftshift(F(Y j

i [b, :, :]))), (19b)

whereRj
i [b] is the radius of the circle for the b-th sample in a

batch, Rj
i is the average radius of the whole batch, S(Rj

i [b])
is the sum of the elements in the area covered by DC as
the center and Rj

i [b] as the radius in Ej
i [b, :, :], S(Ej

i [b, :, :])

is the sum of all elements in Ej
i [b, :, :], and α is a hyper-

parameter between 0 and 1.

3

Figure 4. The visualization results of convolution in the frequency domain for ResNet-56. The three filters are selected from layer3.1.conv1,
the number of input and output channels are both 64.

Figure 5. The visualization results of convolution in the frequency domain for DenseNet-40. The three filters are selected from dense2.1.conv1,
the number of input and output channels are 180 and 12, respectively. For the last column, we can observe the concentration of energy
through the coverage of the blue area near the red cone. From top to bottom, the distribution of the blue area changes from concentrated to
scattered, reflecting the concentration of energy from high to low.

3. Effectiveness of Rank-based and Energy-
based Metrics

In this section, we compare effectiveness of rank-based
and energy-based metrics to show why EZCrop can give
more accurate filter importance evaluation and prune the
given model with higher robustness.

Resolution. Compared with the rank-based metric
(HRank), the energy-based metric (EZCrop) has a higher
resolution. More specifically, HRank evaluates the impor-
tance of the filters by computing the average rank of several

batches of slices. However, the rank of each feature map slice
is only an integer in [0,min(Hi,Wi)]. While in EZCrop, the
information in the whole slice Hi×Wi has been considered.
A higher precision decimal can represent the energy-ratio of
each slice.

Feature Map Extraction. In HRank, the feature maps
must be extracted after the operations like ReLU, batch nor-
malization, max-pooling, etc. These operations increase
the sparsity of the feature map slices. Otherwise, the fea-
ture map’s rank will always tend to be full, which makes it
difficult to distinguish the importance of filters. However,

4

(a) (b) (c) (d)

Figure 6. We take a feature map of size 8 × 8 as an example to illustrate how to decide the radius of the circle. In the first subplot, The
dark and light green show the conjugate symmetry property after F(·) and fftshift(·) operations, and the yellow square represents the DC
component. Subplots (b)-(c) illustrate how to define the radius, and the blue squares are the elements will be summed up in the circle. The
radii in (b)-(c) are 1, 2 and 3, respectively.

EZCrop has broader applicability, which does not rely on
the feature map slices’ sparsity. In other words, EZCrop is
a more general filter evaluation method that can be applied
on feature maps extracted from any position of the neural
network.

Richness of Information. We use Y to denote a single
feature map slice, and Ŷ to denote the feature map mapped
to the frequency domain, and F is the DFT matrix defined
in Eq. 2, then Y can be represented as below:

Y = F (Ŷ � E)F + F (Ŷ � Ē)F, (20)

where E is a mask having the same size as the feature map,
and the elements in the selected area are all 1, while other
elements are all 0. We denote the opposite mask of E as
Ē. The first term of Eq. 20 can be regarded as a set of
low-frequency components. The smaller the energy-zone
ratio, the smaller the frequency diversity in the set of low-
frequency components. In other words, the larger the energy-
zone ratio, the first term contains richer the information of
various frequency components.

4. EZCrop
4.1. Feature Maps of Different Sizes

There are some scenarios the feature maps are not square
(Hi 6= Wi), Figure 7 illustrates how EZCrop finds the DC
center and the energy zone under the exceptional cases. Ob-
viously, EZCrop can be applied to feature maps with any
shape without loss of generality.

4.2. Algorithm

Algorithm 1 describes the workflow how EZCrop evalu-
ates the importance of the filters in a given CONV layer. It
is worth noting that we use the average energy-zone ratio of
several batches instead of the ratio of a single feature map to
evaluate the filters’ importance.

5. Training Details
For all networks in the main paper and Appendix, we use

5 batches of samples to compute the pruning metrics. There

HRrank [4] EZCrop

ResNet-110 1863.45s 774.25s (58.45%)
GoogLeNet 3294.31s 670.12s (79.66%)

Table 1. Runtimes for metric computation in HRank [4] and
EZCrop on CIFAR-10/ImageNet(bottom row) nets.

are 128 samples in each batch. Excluding the ablation study
to explore the relations between the pruning performance
and β, we use β = 0.25 in all our experiments. To make
all comparative experiments between EZCrop and HRank
fair, we follow the training settings of HRank, which can be
found in the official GitHub repository of [4].

6. Additional Experimental Results
Due to space limitations, we put the experimental results

of ResNet-110 / GoogleNet on CIFAR-10 here. The setting
for pruning metric generation are the same in the main paper,
namely, β = 0.25. Besides, we set the training settings for
each comparative experiments between HRank and EZCrop
under different compression rate the same too.

Time Comparison. Table 1 shows the actual runtimes of
EZCrop and HRank to generate the required pruning metrics
for ResNet-110 / GoogleNet on one GTX1080Ti GPU. For
ResNet-110, EZCrop reduces the required time by more than
half, nearly 60%. The time reduction for GoogleNet is more
impressive, reaching about 80%.

ResNet-110. Table 2 displays the results of ResNet-110
on CIFAR-10. Compared with L1 and GAL-0.5, EZCrop
has advantages in all aspects. There are three sets of compar-
ative experiments between HRank and EZCrop. However,
we find the difference between EZCrop and HRank’s Top-
1 accuracy is not as obvious as in ResNet-56. When the
parameter reduction is 39.1% and 68.3%, their accuracies
are exactly the same. When the parameters are reduced by
58.1%, EZCrop shows a 0.05% advantage, which is insignif-
icant. According to the results of ResNet-56/110, EZCrop
has more significant advantages for shallower networks con-
taining residual blocks, and offers a more precise evaluation
of filters’ importance.

GoogLeNet. Table 3 shows the pruning results of

5

https://github.com/lmbxmu/HRankPlus

(a) (b) (c) (d)

Figure 7. (a) Square feature map slice with even height and width. (b) Square feature map slice with odd height and width. (c) Rectangular
feature map slice with odd height and even width. (d) Rectangular feature map slice with even height and odd width.

Algorithm 1 Using EZCrop to evaluate the importance of
the filters in the i-th CONV layer.
Input: M different batches of the output of the i-th CONV
layer Ym

i ∈ RB×Ti×Hi×Wi .
Output: A set of filter indexes Ii = {I1i , · · · , I

Ti
i },

whose elements are sorted according to the im-
portance of the filters from significant to triv-
ial.

1: Step 1: Find the Square Center.
2: if Hi is even then
3: xi = Hi

2 + 1
4: else
5: xi = Hi+1

2
6: end if
7: if Wi is even then
8: yi = Wi

2 + 1
9: else

10: yi = Wi+1
2

11: end if
12: Step 2: Decide the Expanding Distance.
13: lih = Hi − xi , liw = Wi − yi
14: if xi − 1 = 0 or yi − 1 = 0 then
15: di = 0
16: else
17: di = ceil(β ·min(lih, liw))
18: end if
19: Step 3: Calculate the Energy Zone Rate.
20: for m = 1, 2, · · · ,M do
21: for j = 1, 2, · · · , Ti do
22: ηji [m] = 1

B ·
(

1−
∑B

b=1
Sm(di[b])

Sm(Eji [b,:,:])

)
23: end for
24: end for
25: ηji = 1

m ·
∑M

m=1 η
j
i [m]

26: Step 4: Sort the Filters.
27: Ii = {I1i , · · · , I

Ti
i } where ηI

m
i

i ≤ ηI
n
i

i for m ≥ n.

GoogLeNet on CIFAR-10. Compared with the upper part
approaches, EZCrop outperforms all of them in accuracy,
FLOPs, and Params reduction. There are two sets of compar-
ative experiments between EZCrop and HRank. For the first

Model Top-1% FLOPs Params

ResNet-110 93.50 252.89M(0.0%) 1.72M(0.0%)
L1 [3] 93.30 155.00M(38.7%) 1.16M(32.6%)
GAL-0.5 [5] 92.55 130.20M(48.5%) 0.95M(44.8%)

HRank [4] 94.20 140.54M(44.4%) 1.04M(39.1%)
EZCrop 94.20 140.54M(44.4%) 1.04M(39.1%)
HRank [4] 93.81 101.97M(59.6%) 0.72M(58.1%)
EZCrop 93.86 101.97M(59.6%) 0.72M(58.1%)
HRank [4] 93.23 71.69M(71.6%) 0.54M(68.3%)
EZCrop 93.23 71.69M(71.6%) 0.54M(68.3%)

Table 2. Pruning results of ResNet-110 on CIFAR-10.

Model Top-1% FLOPs Params

GoogLeNet 95.05 1.52B(0.0%) 6.15M(0.0%)
Random 94.54 0.96B(36.8%) 3.58M(41.8%)
L1 [3] 94.54 1.02B(32.9%) 3.51M(42.9%)
GAL-0.05 [5] 93.93 0.94B(38.2%) 3.12M(49.3%)
GAL-ApoZ [1] 92.11 0.76B(50%) 2.85M(53.7%)

HRank [4] 95.04 0.65B(57.2%) 2.85M(53.5%)
EZCrop 95.07 0.65B(57.2%) 2.85M(53.5%)
HRank [4] 94.82 0.40B(73.9%) 2.09M(65.8%)
EZCrop 94.84 0.40B(73.9%) 2.09M(65.8%)

Table 3. Pruning results of GoogLeNet on CIFAR-10.

set, the percentage of parameter reduction is 53.5%, and the
difference in Top-1 accuracy between the two approaches is
0.03%. For the second set, the gap between their Top-1 ac-
curacy is 0.02% when the parameters are reduced by 65.8%.
The performances of EZCrop and HRank are very close here,
showing that both schemes have a highly consistent choice
of filters for pruning networks with inception modules.

Repetitive Pruning for VGGNet on CIFAR-10 For a
fixed compression rate, we compare the accuracy of 1-pass
and multi-pass pruning when reaching the required model
size. For fairness, all settings of HRank and EZCrop for
every single-pass are the same. Table 4 indicates that for a
fixed compression rate, the robustness of EZCrop is obvious.
However, due to the accumulation of small inaccuracies, the
1-pass accuracy of HRank is better than that of multi-pass.

7. Run the Codes
We have submitted the codes in the supplementary ma-

terial as well. To use EZCrop, the users are expected to
generate the ratios first, then do the pruning and retrain
the pruned model based on the evaluation results. There

6

#Passes (#epochs) FLOPs Params HRank [4] EZCrop

1 (150) 207.60M 9.15M 93.76% 94.12%
2 (150) 125.68M 4.81M 93.47% 93.78%
3 (150) 66.95M 1.90M 93.02% 93.18%

1 (450) 66.95M 1.90M 93.10% 93.11%

Table 4. Repetitive pruning of VGGNet on CIFAR-10.

is a folder called script, the users can modify the related
arguments and run EZCrop easily by the .sh files. In the
following, we give an example to illustrate how to run the
codes. To generate the ratio:
python ratio generation.py \
–alpha 0.25 \
–data dir ./data \
–dataset cifar10 \
–arch vgg 16 bn \
–pretrain dir ./vgg 16 bn.pth \
–gpu 0,1

According to the importance evaluation results, we can
discard the trivial filters and retrain the pruned model:
python ratio generation.py \
–data dir ./data \
–arch vgg 16 bn \
–pretrain dir ./vgg 16 bn.pth \
–ratio conv prefix ./ratio conv/vgg 16 bn limit5 \
–compress rate [0.45]*7+[0.78]*5 \
–gpu 0,1

After pruning and training, there will be a log file, which
records the whole process.

References
[1] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung

Tang. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv
preprint arXiv:1607.03250, 2016.

[2] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM Review, 51(3):455–500, 2009.

[3] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. Pruning filters for efficient con-
vnets. arXiv preprint arXiv:1608.08710, 2016.

[4] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1529–1538, 2020.

[5] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang
Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and
David Doermann. Towards optimal structured cnn prun-
ing via generative adversarial learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2790–2799, 2019.

[6] Mansoor Rezgi and Lars Eldén. Diagonalization of
tensors with circulant structure. Linear Algebra and its
Applications, 303:422–447, 08 2011.

7

