
Appendix:
COCOA: Context-Conditional Adaptation for Recognizing Unseen Classes in

Unseen Domains

In this appendix, we discuss the following details, which
could not be included in the main paper owing to space con-
straints:
• Propose a new fine-grained ZSLDG benchmark - CUB-

Corruptions and evaluate performance of COCOA on it
along with component-wise analysis (in continuation to
Sec 4)

• Implementation details for each stage of our proposed
methodology to facilitate reproducibility

• Additional analysis of performance on DomainNet
dataset: (1) Performance analysis with varying number
of synthesized unseen class features; (2) t-SNE plots for
more classes following Sec 4 of main manuscript

• Results on standard ZSL and DG setting usings our pro-
posed approach (in continuation to results in Sec 4)

A. CUB-Corruptions: Dataset and Results
Given that DomainNet dataset is the only and pri-

mary benchmark dataset for the ZSLDG as studied in
[A4], we propose a new benchmark - CUB-Corruptions -
which is a relatively small-scale but fine-grained dataset un-
like DomainNet (which is large-scale and coarse grained).
This benchmark facilitates holistic evaluation of models on
dataset with varying granuality and faster prototyping (due
to a relatively smaller size). This benchmark is inspired
by the general common-corruptions benchmark for image
classification [A1] which closely resembles real-world con-
ditions and incorporates domain shifts that are often en-
countered practically (eg. snow, fog, blur etc.). Besides
the domain shift, the corruptions also obscure objects and
class-level information (unlike DomainNet where domain
difference refers mostly different ways to depict the same
object such as clipart, sketch, painting etc), thus making
it challenging for the model to generalize at test-time. We
now describe the dataset and subsequently, our results on
the benchmark.
(Proposed) CUB-Corruptions Benchmark. This dataset
is obtained by applying corruptions like motion blur, spat-
ter, snow, fog, pixelate which are frequently found in real-
world scenarios [A1] on the well-known CUB dataset [A7]

Figure A: Samples from CUB-Corruptions dataset. Rows
correspond to classes and columns correspond to domain-
shifts.

to establish the first fine-grained dataset for the ZSLDG
problem setting. This provides us with images in 6 dif-
ferent domains (including the real image domain). For the
ZSL part, we follow the standard zero-shot splits on CUB
for seen and unseen classes as proposed in [A8]. Also,
we maintain a constant severity level of 5 [A1] for each
of these corruptions. Figure A shows sample images from
the dataset. Similar to the training protocol followed for



Method Target Domain
Fog Snow Blur Spatter Pixelate Avg.

Mixup Img-only 27.6 21.5 39.38 24.5 49.5 32.496
Mixup two-level 32.2 26.4 41.8 28.38 56.5 37.056

CuMix 31.8 25.33 42.24 30.3 58 37.534

f-clsWGAN 25 21.66 28.77 28.47 40.22 28.824
AGG + f-clsWGAN 32.12 31.22 43.4 32.43 57 39.234

CuMix + f-clsWGAN 33.63 30.51 42.4 32.92 56.11 39.114
ROT + f-clsWGAN 34.57 31.11 43.61 33.9 58.53 40.344

COCOADOM(0.1) 34.1 30.8 42.9 30.88 59.34 39.604
COCOAAGG 34.33 31.7 44.1 31.33 60.26 40.344

COCOACuMix 36.36 31.66 44.58 35.31 59.45 41.472
COCOAROT 35.56 34.48 46 37.6 60.07 42.742

Table A: Performance comparison with state-of-art methods for ZSLDG problem setting on the proposed CUB-Corruptions
benchmark. All reported results follow the protocol and splits as described in Sec A. Best results highlighted in bold and
second best are underlined.

DomainNet, we train on 5 domains and test on the left-out
domain, and also present the average results obtained by
changing the target domain in each run. For semantic repre-
sentations, we use the 312-dimensional semantic attributes
provided with the CUB dataset, commonly used in standard
ZSL work [A8].
Evaluation on CUB-Corruptions Benchmark. Table A
shows the results on the CUB-Corruptions benchmark. We
notice a similar trend in the average performance across do-
mains as observed in the case of DomainNet. Our method
variant COCOAROT establishes a new state-of-the-art for
the proposed dataset. Our method outperforms CuMix [A4]
by a margin of 5 % average across domains (i.e 25 % rela-
tive improvement) implying that our model is more robust
to corruption based domain-shifts commonly encountered
in practical real world scenarios. The proposed method is
also superior to standard ZSL methods like f-clsWGAN and
its combinations with different visual backbones. (Refer to
baseline section in main manuscript for more details).

We also show component-wise analysis of our method
on the CUB-Corruptions dataset in Table B. Note that the
variants (i.e S1, S2, S3, S4) follow the same definition as
established for DomainNet component analysis in Sec 4 of
main manuscript.) Once again, as in Sec 4, S4 (our final
overall framework) provides the best results.

Variant Fog Snow Blur Spatter Pixelate Avg.

S1 28.75 27.7 40.86 28 53.4 35.742
S2 36.5 33 44.8 34.8 60.62 41.944
S3 35.36 34.9 45 35.5 60 42.152
S4 35.56 34.48 46 37.6 60.07 42.742

Table B: Ablation study for different components of our
framework on CUB-Corruptions dataset

B. Implementation Details
In this section, we describe the module-wise implemen-

tation details of our method to facilitate reproducibility.

Feature Extraction Module. The first step in our approach
is to train a generalizable feature extractor f(.). Following
previous works [A4], we choose a Resnet-50 architecture as
our visual encoder. For rotation-based self-supervised regu-
larization used in COCOAROT , we perform a 4-way classi-
fication as auxiliary task in LROT where the set of allowed
rotations considered are SROT = {0◦, 90◦, 180◦, 270◦}.
Both semantic projector p(.) and auxiliary rotation classi-
fier are implemented as single linear layer networks. Again
following previous works [A4], we use SGD with momen-
tum optimizer, with a learning rate of 0.001 for semantic
projector p(.) as well as auxiliary rotation classifier with a
weight decay of 5 · 10−5 and momentum 0.9. Training is
done for 8 epochs, with a batch-size containing 24 samples
per domain (total batch-size 120). Learning rates are de-
creased by a factor of 10 after 6 epochs.

Generative Module. The second step of our approach
involves training the generator which is integrated with
context-conditional BatchNorm to generate features match-
ing the distribution of real features f , extracted in the previ-
ous stage. We implement both generator G(.) and discrim-
inator D(.) as 4-layer MLPs with hidden layer size as 4096
and 2048 in case of DomainNet and CUB-Corruptions re-
spectively. Leaky ReLU activation is used for intermediate
layer representations and sigmoid for final layer represen-
tations. Domain-specific embeddings Egen and Edisc have
dimensions of size 64. We use Adam optimizer with learn-
ing rate 0.0001 for both discriminator and generator net-
works, batch-size of 500 and noise dimension of 312 (for
both CUB-Corruptions and DomainNet). The network is



trained for 70 epochs, and in each mini-batch iteration, the
discriminator is updated 5 times before updating generator.

Recognition/Inference Module. After training the gener-
ator and discriminator in the previous stage, we generate
N features for each unseen class using semantic represen-
tation and interpolated domain embeddings, Egen

interp (gen-
erated using source embeddings Egen obtained in the pre-
vious stage). In case of DomainNet, N is chosen to be
2000, 1000, 1500, 1000, 1000 when held out test-domains
are painting, quickdraw, infograph, sketch and clipart re-
spectively. In case of CUB-Corruptions, N is set to 1500
for all held-out domains. The classifier C(.) is implemented
as a single linear layer following standard protocol and is
trained for 25 epochs using Adam optimizer with learning
rate 0.001, β1 = 0.5 and β2 = 0.999.

C. Additional Analysis on DomainNet
Varying number of synthesized features. Herein, we
study the performance of COCOA with varying number
of synthesized features N for unseen classes. To analyze
the performance for different levels of domain shift at test-
time, we plot these results for a relatively easier (i.e paint-
ing) and harder domain (i.e quickdraw) in Figure B. We
observe that the best results are obtained in the range of
N = 1000 − 2000 features and the performance drops as
we further increase the generated features. It can be clearly
seen that the trend for ZSLDG accuracy is fairly stable with
variation in number of synthesized features for Domain-
Net dataset, supporting the robustness of our algorithm to
such hyperparameter choices. Note that we found that other
domains of the DomainNet dataset also followed a similar
trend.

t-SNE plot visualization. Figure C shows t-SNE plot visu-
alizations of generated features for more classes from Do-
mainNet (source domains - Real, Infograph, Quickdraw,
Clipart, Sketch) when only semantic representations are
used in context vector (top row) and when both seman-
tic and domain embeddings are concatenated to get context
vector (bottom row). Note that the classes are selected ran-
domly as mentioned previously. We notice the same obser-
vation as earlier that when both semantic and domain con-
text are used (Fig C, Row 2), the model better captures the
necessary data distribution.

D. Performance on Standard ZSL and DG Set-
tings

For completeness, we also study the effectiveness of
our proposed approach on the standard ZSL and DG set-
tings and compare our performance to the state-of-the-art
ZSLDG method CuMix [A4].

Switching Context. For the standard DG setting, the “con-
text” vector would correspond only to domain-specific in-

Figure B: Variation in ZSLDG performance with different
number of synthesized features for unseen classes

formation (since classes at both test time and training be-
long to the same categories in this setting). Thus, we only
use domain embeddings in the context vector, c, as input
to the BatchNorm estimator. We synthesize visual features
across domains (as in Sec 3.4 of main manuscript) to train
the final classifier. Since DG setting doesn’t assume access
to semantic representations, we use one-hot vectors (as se-
mantic representations).

On the other hand, for the standard ZSL setting, “con-
text” refers to only class-level semantics, since images dur-
ing train and test-time belong to the same domain. Thus, the
context vector input to the BatchNorm estimator comprises
of the semantic representation only i.e c = auy .
Results. Following [A4], we evaluate the performance for
standard DG setting on the well-known PACS dataset [A3]
using ResNet-18 backbone in Table C. In Table D, we
present the results on the standard ZSL setting on SUN
(large-scale, coarse) [A6], FLO (fine-grained) [A5] and
AWA2 (coarse-grained) [A2] datasets. For the ZSL ex-
periments, we use ResNet-101 features – extracted from
a pre-trained ImageNet model – to train the generative
model, following [A4]. Note that we follow standard proto-
cols and backbones for all our experiments to facilitate fair
comparison. From both tables, it can be clearly seen that
even though our method is designed to address the ZSLDG
problem setting, it demonstrates competitive performance
on standard ZSL and DG settings (improved performance
when compared to previous ZSLDG state-of-art approach,
CuMix). This demonstrates the usefulness of the context
vector in our approach. By switching the context appropri-
ately, our method tackles standard DG, standard ZSL and
the harder ZSLDG settings using the same framework.
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