
Supplementary

1. Few-Shot Image Generation
Few-shot image generation (StyleGAN2) We follow the
experimental setting of [15] and show performance on 100-
shot Obama, Panda and Grumpy Cat datasets (having 256
× 256 resolution) using FFHQ [6] pre-trained StyleGAN2
model. Table 1 shows DISP training leads to consistent im-
provement in FID scores over several baseline techniques
except on Grumpy Cat dataset. We hypothesize that this is
because the prior features of this dataset has low diversity
and hence the priors used are not informative enough to lead
to improved performance with DISP.

Style-GAN 2 (256 x 256)

Method Panda Grumpy Cat Obama
FID ↓ FID ↓ FID ↓

FreezeD 16.69 29.67 62.26
+ DISP-Vgg16 14.66 29.93 54.87

DiffAugment 12.06 27.08 46.87
+ DISP-Vgg16 11.14 28.45 43.79

BSA* 21.38 34.20 50.72
GLANN + DISP-Vgg16 11.51 29.85 38.57

Table 1: 100-shot image generation results using StyleGAN2 [7] model
pre-trained on FFHQ dataset for Panda, Grumpy-cat and Obama datasets.
FID is computed between 5k generated and the complete training dataset.
* denotes directly reported from the paper [15].

Impact of loss function To analyze the role of GAN loss
function, we show the performance of DISP with different
variants. Specifically, we choose these three loss functions:
hinge loss (originally in our experiments), non-saturating
loss [5] and the wasserstein loss [1]. Table 2 shows the
corresponding results when DISP is used with FreezeD and
DiffAugment. We observe that in case of FreezeD+DISP
wasserstein loss significantly outperforms non-saturating
loss and hinge loss. In case of DiffAugment hinge loss per-
forms best followed by non-saturating loss and wasserstein
loss.

Samples by varying number of training images Figure
1 shows samples generated by our approach when we vary
the number of training examples in Anime dataset from 25-
500. For quantitative results please refer Figure 3c in main
submission.

Implementation Details We summarize the training pro-
cedure of DISP in Algorithm 1.

Figure 1: Samples of few-shot image generation on varying the number
of training data from 25 to 500 images of Anime dataset using DISP along
with different approaches with SNGAN backbone.

SNGAN (128 x 128)

Method
Pre-

training Anime Faces

H NS W H NS W

FreezeD ✓ 109.40 102.43 148.99 107.83 105.34 209.23
+ DISP-Vgg16 93.36 82.49 74.91 77.09 77.38 71.05

DiffAugment × 85.16 106.96 252.11 109.25 107.18 325.85
+ DISP-Vgg16 48.67 48.61 56.43 62.44 68.66 81.03

Table 2: Comparison between different loss functions in few-shot image
generation using 100 training images (FID: lower is better). H is hinge
loss, NS is non saturating loss and W is wasserstein loss.

In SNGAN architecture, while training with DISP, Gemb

and Demb are matrices which linearly transform the pre-
trained features into generator conditional space of dimen-
sion 128 and discriminator feature space of dimension 1024.
For baseline training, we use an embedding for each of the
100 training images to ensure minimal difference between
baseline and our approach without increasing number of pa-
rameters. We also experimented with self-modulated [3]
and unconditional training which resulted in either training
collapse or worse results in all approaches. In DiffAug-
ment, we use three augmentations: translation, cutout, and
color with consistency regularization hyperparameter as 10
and training is done from scratch following the implementa-
tion in their paper [15]. In FreezeD, we freeze the first five
blocks of the discriminator and finetune the rest. We use
spectral normalization for both generator and discriminator
during training with batch size of 25, number of discrim-
inator steps as 4, G and D learning rate as 2e − 4, z di-
mension as 120 and maximum number of training steps as



Algorithm 1: Data InStance Prior (DISP) training algorithm

1 Input:G, D network with parameters θG and θD , pre-trained
model C for extracting prior condition, samples from real data
distribution q(x) and latent distribution p(z), batch size b,
number of training iterations, discriminator update steps dstep
for each generator update, Adam optimizer hyperparameters
α, β1, β2.

2 for number of training iterations do
3 for t : 1...dstep do
4 Sample batch x ∼ q(x), z ∼ p(z)
5 xfake = G(z|C(x))
6 D(x,C(x)) = Df (x) ·Demb(C(x)) +Dl ◦Df (x)
7 D(xfake, C(x)) =

Df (xfake) ·Demb(C(x)) +Dl ◦Df (xfake)
8 LD = max(0, 1−D(x,C(x))) + max(0, 1 +

D(xfake, C(x)))
9 Update θD ← Adam(LD, α, β1, β2)

10 end
11 Sample z ∼ p(z)
12 Generate images xfake = G(z|C(x)
13 D(xfake, C(x)) =

Df (xfake) ·Demb(C(x)) +Dl ◦Df (xfake)
14 LG = −D(xfake, C(x))
15 Update θG ← Adam(LG, α, β1, β2)

16 end
17 return θG, θD .

30K. During evaluation, moving average weights [12] of
the generator is used in all experiments unless stated other-
wise. For FID calculation, we select the snapshot with best
FID similar to [4, 15]. For calculating precision and recall
based on the k-nearest neighbor graph of inception features,
as in [8], we use k as 10 for Precision and 40 for Recall.

For StyleGAN2, Gemb is a 2-layer MLP with ReLU non-
linearity which maps C(x) to a 512-dimensional genera-
tor conditional space. It is then concatenated with random
noise z of dimension 512 which is used as input in the map-
ping network. Demb is a linear transformation matrix and
discriminator loss is projection loss combined with real/fake
loss. Training is done with batch-size of 16 for DiffAug-
ment1 and 8 for FreezeD2 till 20k steps.

In case of BSA, we show that DISP can be used to im-
prove the results on similar non-adversarial generative mod-
els. Specifically, we perform experiments with GLANN 3

which is a two step training procedure, as follows: (1) Opti-
mize for image embeddings {ei} of all training images {xi}
jointly with a generator network G using perceptual loss;
and (2) Learn a sampling function T : z → e through IMLE
for generating random images during inference. For using
data instance prior in the training procedure of GLANN, in-
stead of directly optimizing for {ei}, we optimize for the

1https://github.com/mit-han-lab/data-efficient-gans
2https://github.com/sangwoomo/FreezeD
3https://github.com/yedidh/glann

following modified objective:

argmin
G,Gemb

∑
i

Lperceptual(G ◦Gemb ◦ C(xi),xi)

where {ei} = {Gemb ◦ C(xi)}
(1)

We finetune the pre-trained generator on batch-size of 50
with a learning rate of 0.01 for 4000 epochs. During second
step of IMLE optimization, we use a 3-layer MLP with z
dimension as 64 and train for 500 epochs with a learning
rate of 0.05.

Comparison with Logo-GAN Logo-GAN [11] has
shown advantage of using features from pre-trained Ima-
geNet network in unconditional training by assigning class
label to each instance based on clustering in the feature
space. We compare our approach with this method in
the few-shot data setting. For implementing logo-GAN,
we perform class-conditional training [10] using labels ob-
tained by K-means clustering on Vgg16 features of 100-
shot Anime dataset. The results reported in Table 3 show
the benefit of directly using features as data instance prior
instead of only assigning labels based on feature clustering.

Method Anime (SNGAN)
FID ↓

FreezeD + DISP 93.36
FreezeD + Logo-GAN (K=5) 226.60
FreezeD + Logo-GAN (K=10) 183.38

DiffAugment + DISP 48.67
DiffAugment + Logo-GAN (K=5) 130.54
DiffAugment + Logo-GAN (K=10) 190.59

Table 3: 100-shot image generation comparison of DISP with Logo-
GAN [11] on Anime dataset where priors are derived from Vgg16 network
trained on ImageNet. FID is computed between 10k generated and real
samples (disjoint from training set).

2. Limited data Image Generation
Experiments on CIFAR-10 and CIFAR-100 For results
shown in Table 3 of main submission, BigGAN model used
for training CIFAR-10 and CIFAR-100 is same as the one
used for large scale experiments in Section 5.3 of main sub-
mission. In DiffAugment with BigGAN architecture, we
use all three augmentations: translation, cutout, and color
along with consistency regularization hyperparameter as 10.
In DiffAugment + DISP consistency regularization hyper-
parameter is changed to 1. For experiments on StyleGAN2
architecture we use the code-base of DiffAugment 4.

4https://github.com/mit-han-lab/data-efficient-
gans/tree/master/DiffAugment-stylegan2



(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-32x32

(d) FFHQ (e) LSUN-Bedroom

Figure 2: Samples generated by our DISP-Vgg16 approach on large-scale image generation

Implementation details of experiment on 128 Resolu-
tion datasets with BigGAN architecture in Section 5.2
of main submission We use our approach in conjunction
with existing methodologies in a similar way as the few-
shot setting with Gemb and Demb as linear transformation
matrices which transform the data priors into the generator’s
conditional input space of dimension 128 and discriminator
feature space of dimension 1536. During baseline training,
we use self-modulation [3] in the batch-norm layers similar
to [4, 13]. In DiffAugment, we use three augmentations:
translation, cutout, and color with consistency regulariza-
tion hyperparameter as 10. During FreezeD training, we
freeze the first 4 layers of discriminator. For TransferGAN,
FreezeD, MineGAN and its augmentation with DISP, we
use the following hyperparameter setting: batch size 256,
G and D lr 2e− 4 and z dimension 120. For DiffAugment,
batch size is 32, D-steps is 4 and rest of the hyperparameters
are same. Training is done till 30k steps for DiffAugment,

Pearson Correlation Anime FFHQ CIFAR-10
Df cosine vs VGG Perceptual 0.65 0.81 0.80
Df cosine vs Image L2 -0.46 -0.61 -0.54

Table 4: Pearson Correlation between cosine similarity in Discriminator
feature space (Df ) vs Vgg-16 perceptual similarity/ L2 distance in Image
space on Anime, FFHQ and CIFAR-10 dataset

FreezeD, and 5k steps for the rest. The moving average
weights of the generator are used for evaluation. We use
pre-trained network from 5 [2] for finetuning.

3. Large-Scale Image Generation
Image inversion To invert a query image, xq using our
trained model, we optimize the prior (after passing it to
Gemb) that is used to condition each resolution block, in-
dependently. Mathematically, we optimize the following

5https://github.com/ajbrock/BigGAN-PyTorch



(a) Custom Editing - First column shows human-edited version
where certain portion of image is substituted with another to
achieve desired semantics. Rest columns correspond to images
generated when Vgg16 features of human-edited version is pro-
vided as prior to DISP module.

(b) Sketch-to-Image - First column shows sketch describing de-
sired high-level semantics. Rest columns correspond to images
generated when Vgg16 features of the sketch version is provided
as prior in DISP module.

(c) Inpainting - First column shows a cutout in an Image. Rest
columns correspond to images generated when Vgg16 features of
the cutout version is provided as prior in DISP module.

(d) Colourization - First column shows gray-scale image describ-
ing desired high-level semantics. Rest columns correspond to im-
ages generated when Vgg16 features of the gray-scale version is
provided as prior in DISP module.

Figure 3: Examples of semantic diffusion used in image manipulation on FFHQ dataset using our DISP-Vgg16 approach.
Top-Left: Custom Editing; Top-Right: Sketch-to-Image; Bottom-Left: Inpainting; Bottom-Right: Colorization

objective:

z∗, C∗
1 , ..C

∗
k = arg min

z,C1,..C2

∥G(z|C1, ..Ck)− xq∥22,

xinv
q = G(z∗|C∗

1 , ..C
∗
k)

Here, Ci (after passing it through Gemb) is the prior that
is used to condition the ith ∈ {1...k} resolution block.



(a) Semantic Variations - First column corresponds to image whose
Vgg16 features are given as prior to DISP module. Rest columns
correspond to images generated using random noise. As can be seen
the generated images are consistent with the prior image in terms of
high-level semantics.

(b) Interpolation - First and last column corresponds to images used
for interpolation. Rest columns correspond to images generated
when Vgg16 features of images in first and last column are inter-
polated and given as prior to DISP module.

Figure 4: Semantic variations and interpolation of generated samples using pre-trained Vgg16 conditional DISP module on FFHQ dataset. (Left (top and
bottom):) Random samples generated with prior as feature of the first column of images in each row; (Right (top and bottom):) all 4 rows show interpolation
of images between the generated image in the first and last column.

Cosine Similarity x and G(z|C(x)) Random pair
VGG perceptual space 0.512 ± 0.067 0.382 ± 0.050
Discriminator’s feature space 0.59 ± 0.096 0.50 ± 0.070

Table 5: Similarity between x and G(z|C(x)) vs Similarity between a
random pair of images from FFHQ dataset.

To get a faster and better convergence, we initialize all Ci

as Gemb(C(xq)). The optimization is achieved via back-
propagation using Adam optimizer with learning rate of 0.1.
Figure 5 (main submission) shows sample inverted images
on FFHQ and LSUN-Bedroom datasets. From the figure,
we can see that models trained via DISP invert a given query
image better than the corresponding baselines.

Equivalence of closeness in latent and image space In
our algorithm, we use projection loss in discriminator latent
space Df to enforce that a generated image G(z|C(x) is se-
mantically similar/close to a given image x. And to verify
if discriminator latent space is indeed good space to mea-
sure similarities, we measure the correlation between cosine
similarity in Discriminator feature Df and Vgg-16 feature
(perceptual similarity) space. Vgg-perceptual similarity is
an accepted measure of image similarity and has been used
in generative models like IMLE, GLANN, BSA as a proxy
for constraints in image space. Additionally, we also report
the correlation between cosine similarity in Discriminator
feature space and L2 closeness measure in the image space.
Table 4 reports our findings where we observe a high pos-
itive correlation between cosine similarity in Df and VGG
perceptual similarity; and a moderate negative correlation

between cosine similarity Df in and L2 distance in Image
space.

To quantitatively verify that G(z|C(x)) is close to x in
the trained model, we also show in Table 5, the perceptual
similarity between the two as compared to a random pair
of images from FFHQ dataset. We can observe that x and
G(z|C(x) are more similar than any random pair of images.

Implementation Details We use a single linear layer to
transform the pre-trained image features to the generator’s
conditional input space of 128 dimensions, and discrim-
inator feature space of 1024 dimensions respectively. A
hierarchical latent structure similar to [2] is used during
DISP training. During evaluation with K-means and GMM
on ImageNet and LSUN-Bedroom we first randomly sam-
ple 200K training images and then fit the distribution since
clustering on complete training set which is in the order of
millions is infeasible. In the training of the unconditional
baseline, we use self-modulation [3]. In SSGAN, for rota-
tion loss we use the default parameter of 0.2 for generator
and 1.0 for discriminator as mentioned in [4]. For training
Self-Conditional GAN [9], we set the number of clusters to
100 for all datasets. For CIFAR-10 and CIFAR-100, we re-
cluster at every 25k iterations with 25k samples, and for Im-
ageNet, at every 75k iterations with 50k samples following
default implementation as in [9]. Following standard prac-
tice [14], we calculate FID, Precision and Recall between
test split and an equal number of generated images for-10,
CIFAR-100, and ImageNet 32× 32, i.e., 10k, 10k, and 50k,
respectively. For FFHQ and LSUN-bedroom datasets, we



use 7k and 30k generated and real (disjoint from training)
samples, respectively. For all datasets and methods, training
is done with batch size of 64, G and D learning rate is set to
0.0002, z dimension equals 120 and spectral normalization
is used in both generator and discriminator networks. Train-
ing is done till 100k steps for all datasets except ImageNet
which is trained for 200k steps and moving average weights
of generator are used during evaluation.

Semantic diffusion for image manipulation We ob-
served that high-level semantics (e.g. hair, gender, glasses,
etc in case of faces) of a generated image, G(z|C(x)), relied
on the conditional prior, C(x). Complementarily, variations
in the latent code z ∼ N(0, I) induced fine-grained changes
such as skin texture, face shape, etc. This suggests that we
can exploit conditional prior, C(x), to get some control over
the high-level semantics of generated image. We show that
by altering an image x (through CutMix, CutOut, etc) and
using C(x) of the altered image as our new input prior helps
in generating samples with the desired attributes, as shown
in Fig 3. In a similar manner, DISP also allows generation
of images with certain cues (like sketch to image genera-
tion, as shown in Fig 3). The generation of samples in this
case is simply done by using C(x) as prior in G.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In Interna-
tional Conference on Machine Learning, pages 214–223,
2017.

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations,
2018.

[3] Ting Chen, Mario Lucic, Neil Houlsby, and Sylvain Gelly.
On self modulation for generative adversarial networks.
In International Conference on Learning Representations,
2018.

[4] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and
Neil Houlsby. Self-supervised gans via auxiliary rotation
loss. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 12154–12163, 2019.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 2672–2680,
2014.

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

[7] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020.

[8] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. In Advances in Neural
Information Processing Systems, pages 3927–3936, 2019.

[9] Steven Liu, Tongzhou Wang, David Bau, Jun-Yan Zhu,
and Antonio Torralba. Diverse image generation via self-
conditioned gans. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020.

[10] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In ICLR, 2018.

[11] Alexander Sage, Eirikur Agustsson, Radu Timofte, and Luc
Van Gool. Logo synthesis and manipulation with clustered
generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5879–5888, 2018.

[12] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In NeurIPS, 2016.

[13] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u-
net based discriminator for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8207–8216, 2020.

[14] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak
Lee. Consistency regularization for generative adversarial
networks. In International Conference on Learning Repre-
sentations, 2019.

[15] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. arXiv preprint arXiv:2006.10738, 2020.


