
Supervised Compression for Resource-Constrained Edge Computing Systems
- Supplementary Material -

Yoshitomo Matsubara Ruihan Yang Marco Levorato Stephan Mandt
Department of Computer Science, University of California, Irvine

{yoshitom, ruihan.yang, levorato, mandt}@uci.edu

1. Image Compression Codecs
As image compression baselines, we use JPEG,

WebP [9], and BPG [6]. For JPEG and WebP, we fol-
low the implementations in Pillow1 and investigate the rate-
distortion (RD) tradeoff for the combination of the codec
and pretrained downstream models by tuning the quality
parameter in range of 10 to 100. Since BPG is not avail-
able in Pillow, our implementation follows [6] and we tune
the quality parameter in range of 0 to 50 to observe the RD
curve. We use the x265 encoder with 4:4:4 subsampling
mode and 8-bit depth for YCbCr color space, following [5].

2. Quantization
This section briefly introduces the quantization tech-

nique used in both proposed methods and neural baselines
with entropy coding.

2.1. Encoder and Decoder Optimization

As entropy coding requires discrete symbols, we lever-
age the method that is firstly proposed in [3] to learn a dis-
crete latent variable. During the training stage, the quanti-
zation is simulated with a uniform noise to enable gradient-
based optimization:

z = fθ(x) + U(−1

2
,
1

2
). (S1)

During the inference session, we round the encoder output
to the nearest integer for entropy coding and the input of the
decoder:

z = ⌊fθ(x)⌉. (S2)

2.2. Prior Optimization

For entropy coding, a prior that can precisely fit the dis-
tribution of the latent variable reduces the bitrate. However,
the prior distributions such as Gaussian and Logistic dis-
tributions are continuous, which is not directly compatible

1https://python-pillow.org/

with discrete latent variables. Instead, we use the cumula-
tive of a continuous distribution to approximate the proba-
bility mass of a discrete distribution. [3]:

P (z) =

∫ z+ 1
2

z− 1
2

p(t)dt, (S3)

where p is the prior distribution we choose, and P (z) is
the corresponding probability mass under the discrete dis-
tribution P . The integral can easily be computed with the
Cumulative Distribution Function (CDF) of the continuous
distribution.

3. Neural Image Compression
In this section, we describe the experimental setup that

we used for the neural image compression baselines.

3.1. Network Architecture

Factorized prior model [4]. This model consists of 4
convolutional layers for encoding and 4 deconvolutional
layers for decoding. Each layer follows (128, 5, 2, 2) con-
figuration in the format (number of channels, kernel size,
stride, padding). We also use the simplified version of gen-
eralized divisive normalization (GDN) and inversed GDN
(IGDN) [2] as activation functions for the encoder and de-
coder, respectively. The prior distribution uses a univariate
non-parametric density model, whose cumulative distribu-
tion is parameterized by a neural network [4].

Mean-scale hyperprior model. We use exactly the same
architecture described in [21].

3.2. Training

All the models are trained on a high-resolution dataset
with around 2,700 images collected from DIV2K dataset [1]
and CLIC dataset [27]. During training, we apply random
crop size (256, 256) to the images and set the batch size as
8. We also use Adam [14] optimizer with 10−4 learning rate
to train the model for 900,000 steps, and then the learning
rate is decayed to 10−5 for another 100,000 steps.

https://python-pillow.org/


4. Channel Reduction and Bottleneck
Quantization

A combination of channel reduction and bottleneck
quantization (CR + BQ) is a popular approach in studies on
split computing [8, 19, 25, 20], and we refer to the approach
as a baseline.

4.1. Network Architecture

Image classification. We reuse the architectures of en-
coder and decoder from Matsubara et al. [19] introduced
in ResNet [11] and validated on the ImageNet (ILSVRC
2012) dataset [23]. Following the study, we explore the rate-
distortion (RD) tradeoff by varying the number of channels
in a convolution layer (2, 3, 6, 9, and 12 channels) placed at
the end of the encoder and apply a quantization technique
(32-bit floating point to 8-bit integer) [13] to the bottleneck
after the training session.

Object detection and semantic segmentation. Simi-
larly, we reuse the encoder-decoder architecture used as
ResNet-based backbone in Faster R-CNN [22] and Mask R-
CNN [10] for split computing [20]. The same ResNet-based
backbone is used for RetinaNet [15] and DeepLabv3 [7].
Again, we examine the RD tradeoff by controlling the num-
ber of channels in a bottleneck layer (1, 2, 3, 6, and 9 chan-
nels) and apply the same post-training quantization tech-
nique [13] to the bottleneck.

4.2. Training

Using ResNet-50 [11] pretrained on the ImageNet
dataset as a teacher model, we train the encoder-decoder
introduced to a copy of the teacher model, that is treated as
a student model for image classification. We apply the gen-
eralized head network distillation (GHND) [20] to the in-
troduced encoder-decoder in the student model. The model
is trained on the ImageNet dataset to mimic the intermedi-
ate features from the last three residual blocks in the teacher
(ResNet-50) by minimizing the sum of squared error losses.
Using the Adam optimizer [14], we train the student model
on the ImageNet dataset for 20 epochs with the training
batch size of 32. The initial learning rate is set to 10−3

and reduced by a factor of 10 at the end of the 5th, 10th,
and 15th epochs.

Similarly, we use ResNet-50 models in RetinaNet
with FPN and DeepLabv3 pretrained on COCO 2017
dataset [16] as teachers, and apply the GHND to the stu-
dents for the same dataset. The training objective, the ini-
tial learning rate, and the number of training epochs are the
same as those for the classification task. We set the training
batch size to 2 and 8 for object detection and semantic seg-
mentation tasks, respectively. The learning rate is reduced
by a factor of 10 at the end of the 5th and 15th epochs.

5. Proposed Student Model
This section presents the details of student models and

training methods we propose in this study.

5.1. Network Architecture

As illustrated in Fig. S1, our encoder fθ is composed of
convolution and GDN [2] layers followed by a quantizer
described in Section 2. Similarly, our decoder gϕ is de-
signed with convolution and inversed GDN (IGDN) layers
to have the output tensor shape match that of the first resid-
ual block in ResNet-50 [11]. For image classification, the
entire architecture of our entropic student model consists of
the encoder and decoder followed by the last three resid-
ual blocks, average pooling, and fully-connected layers in
ResNet-50. For object detection and semantic segmenta-
tion, we replace ResNet-50 (used as a backbone) in Reti-
naNet [15] and DeepLabv3 [7] with our student model for
image classification.

5.2. Two-stage Training

Here, we describe the two-stage method we proposed to
train the entropic student models.

Image classification. Using the ImageNet dataset, we put
our focus on the introduced encoder and decoder at the first
stage of training and then freeze the encoder to fine-tune all
the subsequent layers at the second stage for the target task.
At the 1st stage, we train the student model for 10 epochs to
mimic the behavior of the first residual block in the teacher
model (pretrained ResNet-50) in a similar way to [20] but
with the rate term to learn a prior for entropy coding. We use
Adam optimizer with batch size of 64 and an initial learning
rate of 10−3. The learning rate is decreased by a factor of
10 after the end of the 5th and 8th epochs.

Once we finish the 1st stage, we fix the parameters of the
encoder that has learnt compressed features at the 1st stage
and fine-tune all the other modules, including the decoder
for the target task. By freezing the encoder’s parameters, we
can reuse the encoder for different tasks. The rest of the lay-
ers can be optimized to adopt the compressible features for
the target task. Note that once the encoder is frozen, we also
no longer optimize both the prior and encoder, which means
we can directly use rounding to quantize the latent variable.
With the encoder frozen, we apply a standard knowledge
distillation technique [12] to achieve better model accuracy,
and the concrete training objective is formulated as follows:

L = α · Lcls(ŷ,y) + (1− α) · τ2 · LKL
(
oS,oT) , (S4)

where Lcls is a standard cross entropy. ŷ indicates the
model’s estimated class probabilities, and y is the annotated
object category. α and τ are both hyperparameters, and LKL
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Figure S1: Our encoder and decoder introduced to ResNet-50. k: kernel size, s: stride, p: padding.

is the Kullback-Leibler divergence. oS and oT represent the
softened output distributions from student and teacher mod-
els, respectively. Specifically, oS = [oS

1, o
S
2, . . . , o

S
|C|] where

C is a set of object categories considered in target task. oS
i

indicates the student model’s softened output value (scalar)
for the i-th object category:

oS
i =

exp
(
vi
τ

)∑
k∈C exp

(
vk
τ

) , (S5)

where τ is a hyperparameter defined in Eq. S4 and called
temperature. vi denotes a logit value for the i-th object cat-
egory. The same rules are applied to oT for teacher model.

For the 2nd stage, we use the stochastic gradient descent
(SGD) optimizer with an initial learning rate of 10−3, mo-
mentum of 0.9, and weight decay of 5 × 10−4. We reduce
the learning rate by a factor of 10 after the end of the 5th
epoch, and the training batch size is set to 128. The balanc-
ing weight α and temperature τ for knowledge distillation
are set to 0.5 and 1, respectively.

Object detection. We reuse the entropic student model
trained on the ImageNet dataset in place of ResNet-50 in
RetinaNet [15] and DeepLabv3 [7] (teacher models). Note
that we freeze the parameters of the encoder trained on
the ImageNet dataset to make the encoder sharable for
multiple tasks. Reusing the encoder trained on the Ima-
geNet dataset is a reasonable approach as 1) the ImageNet
dataset contains a larger number of training samples (ap-
proximately 10 times more) than those in the COCO 2017
dataset [16]; 2) models using an image classifier as their
backbone frequently reuse model weights trained on the Im-
ageNet dataset [22, 15].

To adapt the encoder for object detection, we train the
decoder for 3 epochs at the 1st stage in the same way we
train those for image classification (but with the encoder
frozen). The optimizer is Adam [14], and the training batch
size is 6. The initial learning rate is set to 10−3 and reduced

to 10−4 after the first 2 epochs. At the 2nd stage, we fine-
tune the whole model except its encoder for 2 epochs by the
SGD optimizer with learning rates of 10−3 and 10−4 for the
1st and 2nd epochs, respectively. We set the training batch
size to 6 and follow the training objective in [15], which is
a combination of L1 loss for bounding box regression and
Focal loss for object classification.

Semantic segmentation. For semantic segmentation, we
train DeepLabv3 in a similar way. At the 1st stage, we
freeze the encoder and train the decoder for 5 epochs, using
Adam optimizer with batch size of 8. The initial learning
rate is 10−3 and decreased to 10−4 after the first 3 epochs.
At the 2nd stage, we train the entire model except for its
encoder for 5 epochs. We minimize a standard cross en-
tropy loss, using the SGD optimizer. The initial learning
rates for the body and the sub-branch (auxiliary module)2

are 2.5× 10−3 and 2.5× 10−2, respectively. Following [7],
we reduce the learning rate after each iteration as follows:

lr = lr0 ×
(
1− Niter

Nmax iter

)0.9

, (S6)

where lr0 is the initial learning rate. Niter and Nmax iter in-
dicate the accumulated number of iterations and the total
number of iterations, respectively.

5.3. End-to-end Training

In this work, the end-to-end training approach for feature
compression [26] is treated as a baseline and applied to our
entropic student model without teacher models.

Image classification. Following the end-to-end training
approach [26], we train our entropic student model from

2https://github.com/pytorch/vision/tree/master/
references/segmentation

https://github.com/pytorch/vision/tree/master/references/segmentation
https://github.com/pytorch/vision/tree/master/references/segmentation
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Figure S2: Component-wise delays to complete input-to-prediction pipeline, using RPI4 as mobile device.
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Figure S3: Component-wise delays to complete input-to-prediction pipeline, using JTX2 as mobile device.

scratch. Specifically, we use Adam [14] optimizer and co-
sine decay learning rate schedule [17] with an initial learn-
ing rate of 10−3 and weight decay of 10−4. Based on
their training objectives (Eq. S7), we train the model for 60
epochs with batch size of 256.3 Note that Singh et al. [26]
evaluate the accuracy of their models on a 299× 299 center
crop. Since the pretrained ResNet-50 expects the crop size
of 224 × 224,4 we use the crop size for all the considered
classifiers to highlight the effectiveness of our approach.

L = Lcls(ŷ,y)︸ ︷︷ ︸
distortion

− β log pϕ(fθ(x) + ϵ)︸ ︷︷ ︸
rate

, ϵ ∼ Unif(− 1
2 ,

1
2 )

(S7)

Object detection. Reusing the model trained on the Im-
ageNet dataset with the end-to-end training method, we
fine-tune RetinaNet [15]. Since we empirically find that
a standard transfer learning approach5 to RetinaNet with

3For the ImageNet dataset, Singh et al. train their models for 300k steps
with batch size of 256 for 1.28M training samples, which is equivalent to
60 epochs (= 300k×256

1.28M
).

4https://pytorch.org/vision/stable/models.html#
classification

5https://github.com/pytorch/vision/tree/master/
references/detection

the model trained by the baseline method did not converge,
we apply the 2nd stage of our fine-tuning method described
above to the RetinaNet model. The hyperparameters are the
same as above, but the number of epochs for the 2nd stage
training is 5.

Semantic segmentation. We fine-tune DeepLabv3 [7]
with the same model trained on the ImageNet dataset. Us-
ing the SGD optimizer with an initial learning rate of 0.01,
momentum of 0.9, and weight decay of 0.001, we minimize
a standard cross entropy loss. The learning rate is adjusted
by Eq. S6, and we train the model for 30 epochs with batch
size of 16.

6. End-to-End Prediction Latency
In this section, we provide the detail of the end-to-end

prediction latency evaluation shown in this work. Fig-
ures S2 and S3 show the breakdown of the end-to-end la-
tency per image for Raspberry Pi 4 (RPI4) and NVIDIA
Jetson TX2 (JTX2) as mobile devices, respectively. For
each of the configurations we considered, we present 1) lo-
cal processing delay (encoding delay on mobile device), 2)
communication delay to transfer the encoded (compressed)
data to edge server by LoRa [24], and 3) server process-
ing delay to decode the data transferred from mobile device

https://pytorch.org/vision/stable/models.html#classification
https://pytorch.org/vision/stable/models.html#classification
https://github.com/pytorch/vision/tree/master/references/detection
https://github.com/pytorch/vision/tree/master/references/detection


and complete the inference pipeline on edge server (ES).
Following [18, 19, 20], we compute the communication de-
lay by dividing transferred data size by the available data
rate, 37.5 Kbps (LoRa [24]) in this paper. For all the con-
sidered approaches, we use the data points with about 74%
accuracy in our experiments with the ImageNet dataset.

From the figures, we can confirm that the communica-
tion delay is dominant in the end-to-end latency for all the
approaches we considered, and the third component (server
processing delay) is also negligible as the edge server has
more computing power that the mobile devices have. Over-
all, our entropic student model successfully saves the end-
to-end prediction latency by compressing the data to be
transferred to edge server with a small portion of computing
cost on mobile device.
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[3] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-
to-end Optimized Image Compression. International Con-
ference on Learning Representations, 2017.
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