
Supplementary Material: Fair Visual Recognition in Limited Data Regime using
Self-Supervision and Self-Distillation

1. Effect of Biased Data on Model Predictions
1.1. Terminologies used

1. grayscale CIFAR-10S - All images in CIFAR-10S con-
verted to grayscale.

2. color CIFAR-10S - All images in CIFAR-10S replaced
by the corresponding original color images in CIFAR-
10.

3. grayscale L-CIFAR-10S - All images in L-CIFAR-10S
converted to grayscale.

4. color L-CIFAR-10S - All images in L-CIFAR-10S re-
placed by the corresponding original color images in
CIFAR-10.

5. GrayTrainColorTest (GTCT) on CIFAR-10S - Model
trained on grayscale CIFAR-10S and evaluated on a
test set containing only color images.

6. GrayTrainColorTest (GTCT) on L-CIFAR-10S -
Model trained on grayscale L-CIFAR-10S and evalu-
ated on a test set containing only color images.

7. ColorTrainColorTest (CTCT) on CIFAR-10S - Model
trained on color CIFAR-10S and evaluated on a test set
containing only color images.

8. ColorTrainColorTest (CTCT) on L-CIFAR-10S -
Model trained on color L-CIFAR-10S and evaluated
on a test set containing only color images.

1.2. Effect of Data Bias with Sufficient Data

The authors in [5] experimentally show that a base-
line ResNet-18 [2] model trained on CIFAR-10S achieves
89.0 ± 0.5% classification accuracy on the color test set.
Whereas the same model trained on grayscale CIFAR-10S
(GTCT) achieves 93.0% classification accuracy on the color
test set [5], which is a significant increase. The authors at-
tribute this problem to the skewed data in the CIFAR-10S
dataset. As a result, the model is biased towards predict-
ing one among the five color domain classes in the case
of colored images since these classes contain mostly color

images. The authors in [5] propose that the goal of any
bias mitigating approach should be to achieve a classifica-
tion accuracy at least close to that of GTCT on CIFAR-10S
(93.0%). It should also ideally approach the classification
accuracy of CTCT on CIFAR-10S which is 95.0%. The
performance gap in the baseline (grayscale CIFAR-10S vs.
CIFAR-10S) due to the bias is 4%. Our approach trained
on sufficient data (CIFAR-10S) achieves a classification ac-
curacy of 91.1% on the color test, which is significantly
higher than the baseline and reduces this gap from 4% to
around 2%. This also validates that generalization and rep-
resentation learning matter even in the case of fair visual
recognition with sufficient data.

The authors in [5] compare various bias mitigation ap-
proaches on the CIFAR-10S dataset. The experimental
results indicate that the domain independent strategy pro-
posed in [5] achieves the highest accuracy of 92.4% on the
color test set as compared to the other approaches. The
domain discriminative training approach achieves a clas-
sification accuracy of 91.2% on the color test set. These
performances are close to the 93% classification accuracy
achieved by GTCT on CIFAR-10S. Therefore, the gap in
the performance of the domain discriminative and domain
independent training approaches compared to GTCT on the
CIFAR-10S dataset are 1.8% and 0.6%, respectively. Our
approach augmented with the domain independent method
trained on CIFAR-10S achieves a classification accuracy
of 93.2% on the color test, which outperforms the domain
independent (92.4%) model and also slightly outperforms
GTCT (93%) on CIFAR-10S.

2. Experiments

2.1. Datasets

Introductory details regarding the datasets have been
provided in Sec. 5.1 in the main paper. All the CIFAR-10S
variants retain the 10 classes and 50,000 training images of
the CIFAR-10 [4] dataset but modify the training images
to introduce a bias using a domain attribute containing two
domains, d1 and d2. The d1 domain has five classes, each
containing 95% d1 type images and 5% d2 type images (95-
5% skew). The remaining five classes belong to the d2 do-



main and contain 95% d2 type and 5% d1 type images each
(95-5% skew). Further details are given below.

1. CIFAR-10S dataset: The domain attribute in this
dataset is whether the image is colored (standard
CIFAR-10 color images) or grayscale (grayscale ver-
sion of CIFAR-10 images). The color domain has
five classes, each containing 95% color images and
5% grayscale images (95-5% skew). The remaining
five classes belong to the grayscale domain and con-
tain 95% grayscale and 5% color images each (95-5%
skew).

2. CIFAR-10S-i: The domain attribute in this dataset is
whether the image is a standard CIFAR-10 color im-
age or a downsized image (32 × 32) of the same class
from the ImageNet dataset. The CIFAR-10 color do-
main has five classes, each containing 95% color im-
ages and 5% ImageNet images (95-5% skew). The re-
maining five classes belong to the ImageNet domain
and contain 95% ImageNet images and 5% CIFAR-10
color images each (95-5% skew).

3. CIFAR-10S-c28: The domain attribute in this dataset
is whether the image is a standard CIFAR-10 color im-
age of size 32 × 32 or a CIFAR-10 image cropped
to 28 × 28 from the center and resized/upsampled to
32 × 32 (c28). The CIFAR-10 color domain has five
classes, each containing 95% color images and 5% c28
images (95-5% skew). The remaining five classes be-
long to the c28 domain and contain 95% c28 images
and 5% CIFAR-10 color images each (95-5% skew).

4. CIFAR-10S-d16: The domain attribute in this dataset
is whether the image is a standard CIFAR-10 color
image of size 32 × 32 or a CIFAR-10 image down-
sized to 16 × 16 and resized/upsampled to 32 × 32
(d16). The CIFAR-10 color domain has five classes,
each containing 95% color images and 5% d16 images
(95-5% skew). The remaining five classes belong to
the d16 domain and contain 95% d16 images and 5%
CIFAR-10 color images each (95-5% skew).

5. CIFAR-10S-d8: The domain attribute in this dataset is
whether the image is a standard CIFAR-10 color image
of size 32×32 or a CIFAR-10 image downsized to 8×8
and resized/upsampled to 32 × 32 (d8). The CIFAR-
10 color domain has five classes, each containing 95%
color images and 5% d8 images (95-5% skew). The re-
maining five classes belong to the d8 domain and con-
tain 95% d8 images and 5% CIFAR-10 color images
each (95-5% skew).

We have provided concise details regarding the CIFAR-
10S, CIFAR-10S-i, CIFAR-10S-c28, CIFAR-10S-d16, and

CIFAR-10S-d8 datasets. For further details regarding these
datasets, please refer to [5].

The L-CIFAR-10S, L-CIFAR-10S-i, L-CIFAR-10S-c28,
L-CIFAR-10S-d16, and L-CIFAR-10S-d8 datasets are lim-
ited data versions of CIFAR-10S, CIFAR-10S-i, CIFAR-
10S-c28, CIFAR-10S-d16, and CIFAR-10S-d8 datasets, re-
spectively. They contain 5% of the images of their respec-
tive parent dataset but with the same skew level (95-5%).
Specifically, we choose the first 5% images from each class
while maintaining the same level of skew, i.e., we sepa-
rately choose the first 5% images from each domain for ev-
ery class. For example, in the case of L-CIFAR-10S, we
separately choose 5% images from the color and grayscale
images in each class. As a result, if a class contained 95%
color images and 5% grayscale images or vice-versa, the ra-
tio of color and grayscale images will still remain the same
in every class of L-CIFAR-10S.

2.2. Compared Approaches

Introductory details regarding the compared approaches
have been provided in Sec. 5.2 in the main paper. We pro-
vide further details regarding the compared approaches be-
low:

1. Strategic sampling: In this approach, the rare (minor-
ity) images are strategically re-sampled to artificially
balance the dataset in terms of the number of images
of the two types/domains in each class. However, it
also increases the chances of overfitting due to seeing
the same images multiple times. It also increases the
training time without providing any additional infor-
mation [5].

2. Adversarial training approach: In this approach, a min-
imax objective is set to minimize the possibility that
the protected attribute can be predicted using the fea-
tures from the network while maximizing the classifi-
cation power of the network. It is based on the idea
that if the model cannot encode the information re-
garding the protected attribute, it will not be affected
by the bias due to that attribute. In our paper, we per-
form experiments for both the techniques used in [5]
under the adversarial approach. Specifically, we per-
form adversarial training using the uniform confusion
loss −(1/|D|)

∑
d log qd approach, and the loss rever-

sal
∑

d 1[d̂ = d] log qd with gradient projection ap-
proach used in [5].

3. Domain discriminative training approach: In this ap-
proach, the protected attribute is explicitly modeled
as opposed to the adversarial approach, and the cor-
relation between the classes and the protected attribute
is then explicitly removed during inference. The au-
thors in [5] employ a simple approach of using an



ND-way classifier where N is the number of image
classes, and D is the number of domains. They pro-
pose three types of inference for this approach. First
approach, involves directly adding the probabilities for
all the domains per class (argmaxy

∑
d Ptr(y, d|x)).

But this does not take into account the prior infor-
mation regarding the correlation between the classes
and domains. The next two approaches involve
first applying a prior shift based on this correlation
(Pte(y, d|x) = Ptr(y, d|x)/Ptr(y, d)) and then either
adding the probabilities for all the domains per class
(argmaxy

∑
d Pte(y, d|x)) or taking the highest prob-

ability without adding the domain wise class probabil-
ities (argmaxy maxd Pte(y, d|x)). The authors in [5]
also use Reducing Bias Amplification (RBA) [6] as an
inference method.

4. Domain independent training approach: In this ap-
proach, the authors in [5] try to avoid the problems in
the domain discriminative approach. One such prob-
lem is that the domain discriminative approach leads
to learning decision boundaries among different do-
mains in the same class, which may be unnecessary,
especially in cases when the class prediction is already
good. Therefore, in the domain independent training
approach, separate classifiers are trained per domain
but with a shared feature extraction network. The au-
thors in [5] experiment with two inference methods: a)
ŷ = argmaxy Pte(y|d∗, x), if the domain d∗ of the
test image is known, b) ŷ = argmaxy

∑
d s(y, d, x),

which is basically the sum of the classification layer
activations for each domain per class.

We have provided concise details regarding the bias mit-
igation methods. For a more detailed discussion regarding
these methods, refer to [5].

2.3. Implementation Details

For any given architecture (ResNet-18 or ResNet-50),
we take the output of the last convolutional layer before the
fully connected classification layer and use it for the Sim-
Siam objective function. We add a multi-layer perceptron
projection head and a multi-layer perceptron based predic-
tion head as required by SimSiam. The multi-layer percep-
tron projection head has 3 fully connected layers, each hav-
ing an output size of 2048 and followed by a batch nor-
malization layer and ReLU activation. The multi-layer per-
ceptron prediction head has 2 fully connected layers having
output sizes of 512 and 2048, respectively. The first layer
is followed by a batch normalization layer and ReLU acti-
vation. The training settings for SimSiam are the same as
proposed in [1]. For self-distillation, we use κ = 4. For
a fair comparison, we use the same training settings for all

the methods as described in [5]. For the experiments in-
volving the L-CIFAR-10S dataset and its variants, we train
the model from scratch for 200 epochs using an SGD opti-
mizer with an initial learning rate of 1e−1, weight decay of
5e−4, and momentum of 0.9. The learning rate is decreased
by a factor of 10 after every 50 epochs. The training images
are padded with 4 pixels, randomly flipped horizontally, and
randomly cropped to 32× 32 [5].

In the ResNet-50 backbone used for the L-CelebA ex-
periments, the fully connected layer is replaced with 2 fully
connected layers [5] with a dropout and a ReLU activa-
tion layer between them. We train the network using the
binary cross-entropy loss for 50 epochs with a batch size
of 32. We use the Adam optimizer [3] with a learning
rate of 1e−4. For the L-CelebA experiments, we use a
weighted mAP proposed in [5] to remove the gender bias
in the test set. If an attribute is more prevalent among the
women images, BA = Pw/(Pm +Pw)−Nw/(Nm +Nw)
where Pw, Pm refer to the number of images of women
and men predicted to have this attribute. Nw, Nm refer to
the actual number of women and men images in the train-
ing data. If an attribute is more prevalent among the men,
BA = Pm/(Pm + Pw)−Nm/(Nm +Nw). Since the ob-
jective of bias mitigation is to reduce the level of bias that
was learned from the training data and the bias amplifica-
tion score is expected to be negative as the model becomes
fairer across genders [5].

In our approach, given an image, we apply random aug-
mentations to create two different views. We feed them
to the backbone network and perform the standard cross-
entropy loss based training for image classification (or bi-
nary cross-entropy loss based training for multi-label clas-
sification). We also feed the features for both the views to
the multi-layer perceptron projection head and then the pre-
diction head in order to apply the SimSiam loss function
as described in Eqs. 1, 2, 3, 4 in the main paper. In order
to apply self-distillation, we minimize KL divergence be-
tween the logits/soft predictions of the student and teacher
networks. For all the experiments, the domain labels are
assumed to be available during training time.

We use the same experimental settings and metrics for
comparing bias mitigation approaches as used in [5]. Please
refer to [5] for further details.
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