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1. Sub-Goal Identification
In Figure 1 1 we separately show how our agent identi-

fies a sub-goal in hindsight after an episode is completed.
The agent takes the actions as described in the main paper
until reaching the final state, e.g. either the ”STOP” action
is selected or the maximum number of permitted actions
are exhausted. Then, it selects the state with the maximum
attention weight αjas the sub-goal and adds the tuple of
(s0,gτ , ŝτ ) to the replay buffer. The replay buffer is, then,
used to train the sub-goal generation module, as described
in the main paper.

Furthermore, note that in our sub-goal selection mecha-
nism we add position embedding to each state representa-
tion si to maintain the order of the observed states in the
sub-goal selection, inspired by [3].

2. Sub-Goal Identification: Qualitative Results
In Figure 2 we present qualitative results of our sub-

goal identification method as described in the main paper.
In that figure, random successful trajectories from the un-
seen test set are visualised. The goal state is shown with a
green frame and the selected sub-goal state is shown with
a red frame. We can see that the sub-goal state highly cor-
relates with the real goal state. In all those episodes our
agent learns to identify the sub-goals that have a few com-
mon features: (1) the target object is clearly visible; (2) the
goal state is reachable with very few steps; (3) from the sub-
goal to the goal state the agent needs to take simple actions,
usually just MoveAhead.

3. What to Imagine
In Table 1 we present more detailed ablation study re-

sults. The details of the methods in Table 1 are presented in
the main paper; here of special interest is the performance
on longer trajectories. We can see that in all the methods
compared in Table 1 the performance trend for longer tra-
jectories follows the trend for the short ones, except when

1Note the trajectories are sub-sampled for visualisation purposes.

we compare Ours-ATT with Ours-ForeSI. Specifically,
Ours-ATT performs better than Ours-ForeSI on longer
trajectories. We believe that this is mainly because it can
be more helpful for longer trajectories to imagine a combi-
nation of the future states to arrive at rather than a single
state that may require a long trajectory to take. In contrast,
for shorter trajectories, a single fully identifiable state imag-
ination is more helpful.

4. Explicitly Structured Imagination
As briefly described in the main paper, we compare the

imagination capability of our simple method with a more
complex reconstruction-based method. We use a Condi-
tional Variational Auto-Encoder (C-VAE) [2] for this exper-
iment. Our C-VAE consists of 6 fully-connected layers with
the following number of neurons, respectively: [512+64,
512, 256, 128, 32+22, 256, 512, 512] with a latent dimen-
sion of 32. We use ReLU non-linearity on all layers except
the last layer for which we use Tanh. We use 1e−4 as the
KL divergence regularisation rate.

5. Qualitative Results
In this section, we provide further key insights into how

our agent performs in different navigation scenarios and
what its main strengths and some weaknesses are hoping
to encourage future research for further improvements.

In Figure 4 we compare two sample trajectories between
our method and the baseline method [4]. In Figure 4 (a)
we observe that forward modelling helps our agent identify
the target object while the baseline method disregards the
observed target and stops at a random location after a few

Method SPL SR SPL>5 SR>5
A3C+ORG [1] 37.5 65.3 36.1 54.8
Ours-RND 37.57 64.8 35.13 53.07
Ours-INT 37.78 63.8 35.0 53.0
Ours-ATT 37.76 65.4 38.25 56.54
Ours-ForeSI 38.66 67.6 36.85 56,11

Table 1. Various ablation studies for our ForeSI.
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Sub-Goal Selection in Training

Figure 1. Overview of our sub-goal selection/ identification method showing how our agent selects a sub-goal state to fill the replay buffer
during the training; the replay buffer is then used to train our sub-goal generation module as described in the main paper.

Figure 2. Sample trajectories from the unseen test set showing sub-goal selection results using our method. The red frame shows the
selected sub-goal state and the green frame the final successful goal state.

searching steps. While being eventually successful, here
our agent misses the target once and returns to a similar
state again. This might be due to the fact that our sub-goal
selection method might not have observed the target in the
very first few steps and thus can still be further improved. A
similar scenario can be observed in Figure 4 (b), where the
laptop is visible in the agent’s observation but the agent has

to take a few extra steps and return to the laptop again. This
has been observed multiple other times in the test trajec-
tories. Despite the improvement that our method presents
in SPL 4 provides more insights into how we might further
improve our sub-goal selection.

In Figure 3 we present two sample trajectories that show
how our agent is able to take the shortest path to the target



object. In contrary, the baseline method [4] either dismisses
the target object and takes the wrong trajectory in Figure
3 (a), or cannot stop at the right location in Figure 3 (b)
and fails. Those two samples show that our method has the
potential to address the two major problems with the current
previous state-of-the-art methods.

In Figure 5 we present sample failure cases of our
method where the baseline agent is able to complete the
trajectories successfully. In Figure 5 (a), our agent fails to
detect the ”alarm clock” despite being visible in the first
few state observations and instead moves towards the place
where a bedside is usually located. This can be due to the
fact that during the training the agent has mostly observed
the ”alarm clock” closer to the bed hence our agent imag-
ines a state closer to the bed. In Figure 5 (b), although
our agent takes the correct trajectory that leads to the tar-
get, ”plant”, it fails to stop close enough. On the contrary,
the baseline method [4] stops within the 1-meter proximity
and is successful.
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Figure 3. Our ForeSI agent has learnt to imagine the optimal sub-goal hence it takes a near-optimal trajectory while the baseline method
fails.
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Target: Toaster Target: Laptop

Figure 4. Although our agent achieves an overall higher success rate, the length of the trajectory could still be more optimal.



Target: Alarm Clock Target: Plant
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Figure 5. Failure cases of our method; (a) shows a sample failure that might happen due to imagining the wrong state (here a bedside near
the bed where the alarm clock normally is located) and (b) happens due to early stopping.
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