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Abstract

This supplementary document provides the extra details
of our experiments from the main paper and discusses some
additional experiments. We first discuss the details of the
motivation experiments in Section 1. Subsequently, we dis-
cuss the characterization experiments on the GPU and the
details of the characterization on the hardware accelerator
in Section 2. Next, we discuss the data augmentation details
and the configurations of the classifiers in Section 3. We
also show the sensitivity analyses of our chosen features.
Lastly, we explain the calculation to convert the disparity
error into the reduction in the safety buffer time in Section 4.

1. Motivation Experiments
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Figure 1. Error difference of SGM and Highres for KITTI 2015
dataset

We motivate our scheme by looking at the results in Fig-
ure 1. On the y-axis it shows the difference in the percent-
age 3-pixel error of SGM and Highres across a set of 200
images from the KITTI-2015 [6] dataset; they are sorted in
descending order. We observe that for roughly half the im-
ages, the CNN-based algorithm Highres [10] is better than
the most accurate traditional algorithm, SGM (Semi-global

matching) [2]; the reverse is true for roughly the other half.
This debunks a popular belief that CNNs are always the best
when it comes to computer vision tasks [4].

Augmented KITTI (sorted)
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Figure 2. Error difference of SGM and Highres for augmented
KITTI dataset

We plot similar data in Figure 2 for the augmented KITTI
dataset, where we augment the images in the KITTI dataset
with general weather scenarios such as snow, rain, fog, etc.
(see Section 3). We observe that for 33% of the images,
Highres is better than SGM while for the rest of the images,
the reverse is true. Moreover, the difference in their errors is
much larger (up to 95%) as compared to the difference using
the non-augmented dataset (up to 9%). This suggests that
CNN-based models are not easily generalizable to changing
weather scenarios and consequently their accuracy drops.

Note that in both the experiments, the individual errors
of Highres and SGM are not large – for KITTI, the aver-
age 3-pixel error is 2.66% for Highres and 2.58% for SGM;
for augmented KITTI, it is 13% for Highres and 6.8% for
SGM. Thus, the large difference in the error in the plots is
due to one algorithm performing poorly on a frame while
the other performs fairly well. If we choose the more accu-
rate algorithm for each frame, the average 3-pixel error be-
comes 5.28% for the augmented case, which is lower than
the individual errors of Highres and SGM.

Hence, we argue that any reliable high-performance
stereo-vision system needs to have a high-level predictor
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Model MACs (109) Dataflow Accelerator (scaled to 16nm [3]) GPU Tesla P100 Error(%)
RS OS WS

Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J)
PSMNet 980 2.10 0.70 3.22 1.46 3.22 1.15 0.47 47 0.8
GwcNet 1170 2.44 0.85 3.82 1.79 3.82 1.43 0.35 43.82 0.8

DeepPruner 775 1.74 0.72 2.68 1.15 2.68 0.92 0.052 5.72 1.1
Highres 55 0.09 0.048 0.19 0.089 0.19 0.070 0.039 2.19 2.6

Table 1. Execution time per frame, energy consumption, and error for CNN-based stereo algorithms

Model KITTI-15 test dataset KITTI-15 train dataset
Error (D1-all) Time (s) Error (D1-all) Time (s)

MC-CNN 3.89 67 9.2 11.39
PSMNet 2.32 0.41 0.8 0.47
DeepPruner-fast 2.59 0.06 1.5 0.037
DeepPruner-best 2.15 0.18 1.1 0.052
AnyNet 6.8 0.097 6.1 0.019
GANet-deep 1.81 1.8 7.3 4.59
GwcNet 2.11 0.32 0.8 0.35
Highres 2.14 0.15 2.6 0.039

Table 2. 3-pixel error and execution times for CNN-based stereo
algorithms

(selection predictor) that intelligently chooses between al-
gorithms such as SGM and Highres (dynamically based on
the ambient environment). Moreover, a confidence predic-
tor in conjunction with the selection predictor is needed
to provide a confidence on the disparity estimation accu-
racy of these algorithms. This confidence measure can be
used to trigger higher-level driver actions in case of a low-
confidence prediction to avoid human fatalities.

2. Characterization of CNN-based Stereo
Workloads

Table 2 shows the 3-pixel error and the inference time
of the popular CNN-based stereo vision algorithms. The
2nd and the 3rd columns show the average 3-pixel error and
execution time per frame that are reported by the original
papers on the KITTI-2015 test set. The underlying hard-
ware is different for all the algorithms and hence, the exe-
cution time numbers are not directly comparable. Thus, we
performed our own experiments to calculate the error of dis-
parity estimation and the execution time (shown in columns
4th and 5th) of the algorithms on the same underlying hard-
ware, Nvidia Tesla P100 GPU. We used the pretrained mod-
els available on the official Github repositories and tested
the model on the KITTI-2015 [6] training dataset (because
of the unavailability of the ground truth for the test dataset
and the submissions to the evaluation server allowed for the
new algorithms).

We observe in Table 2 that the errors on the training set
are lower than the errors on the test set for all the models
except MC-CNN and GANet. This is intuitive since we use
the KITTI pretrained models for all the algorithms. The
significant difference in the error and execution times of
GANet in the published and our version is primarily be-

cause the published numbers are obtained by running the
model on the downsampled images, and performing speed
related optimizations (not open source). For the comparison
of the execution times, we consider the 5th column of the ta-
ble because these are obtained on the same underlying hard-
ware, Nvidia Tesla P100. We find that the execution times
per frame for MC-CNN and GANet-deep are prohibitively
large.

From this experimentation we choose the most accu-
rate algorithms for characterization on the CNN accelera-
tor simulator, Timeloop: PSMNet, GwcNet, Highres, and
DeepPruner. We discard MC-CNN and AnyNet because
they show high errors in the estimation of disparity for both
the published results and the results from our experiments.
Even though GANet shows low error in the published re-
sults, we discard it from further characterization because of
its high error in our experiments.

Table 1 shows the inference time and the energy con-
sumption (on KITTI images) per frame of the chosen al-
gorithms on the CNN accelerator with different dataflows
and the Nvidia Tesla P100 GPU. Upon analyzing the four
algorithms, we find that GwcNet has the highest execution
time and worst energy efficiency (see Figure 3), while hav-
ing similar accuracy as PSMNet. Hence, it can be removed
from the final algorithms. We thus show the further results
and choose the best algorithm from PSMNet, DeepPruner,
and Highres. This is shown in the main paper.
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Figure 3. Energy efficiency vs execution time
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Figure 4. Example of data augmentation on KITTI dataset. Annotations show the algorithms that achieve better accuracy on the frame

3. Design Choices for the Predictor

Table 3 shows the features and their description that we
extract from the stereo image pairs to train the predictor.

Features Description
%Dark regions [9] Percentage of regions that are dark and pro-

vide no useful information
Perceived bright-
ness [1]

Quantifies the contrast, color, and reflectance
of an image in terms of the weighted sum of
the 〈R, G, B〉 channels

Contrast [7] Quantifies the local variations of the inten-
sity in an image.

Homogeneity [7] Measures the closeness of equivalent gray-
scale levels in an image

SSIM (structural sim-
ilarity index) [8]

Quantifies the similarity of two images in
terms of luminance, contrast, and structure.

Table 3. Features and their description

3.1. Data Augmentation

In order to make our predictor generalize to different
weather scenarios, we created a new version of the KITTI
dataset by augmenting it with images capturing several
weather conditions. Figure 41 shows an example of the dif-

1read this on a color display or take a color printout

ferent data augmentations used in our work. We also anno-
tated the figure with the different algorithms that performed
well in terms of estimating the disparity on different images.

3.2. Configurations of the Competing Classifiers

Table 4 shows the best configurations for different popu-
lar classifiers that were compared to find the best classifier
for the selection predictor. We optimized the configurations
of these classifiers for accuracy.

Predictors Scikit configuration (best)
MLP hidden layer=4, neurons=150, 100, 150, 100,

activation=relu, learning rate=adaptive
SVM gamma=scale, kernel=rbf
KNearestNeighbor n neighbors=10, algorithm=kd tree
LogisticRegression solver=liblinear
Adaboost n estimators=50, learning rate=0.8
DecisionTree max depth=5, min samples split=3

Table 4. Configurations of the predictors

We performed exhaustive experiments with these predic-
tors and different feature combinations. Based on the ex-
periments, we plotted Figure 7 that shows the accuracy of
the different predictors for two types of feature sets: per-
ceived brightness + dark regions (PBDR), and all features.
We observed that a decision tree with PBDR achieves the
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Figure 5. Sensitivity of the predictor to brightness
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Figure 6. Sensitivity of the predictor to the percentage of dark re-
gions

best accuracy. We also tried designing CNNs for predicting
the accuracy but discarded the idea considering the time and
energy overheads.

Lo
gist

icR
egressi

on

Adaboost

Decis
ionTre

e

A
cc

u
ra

cy
 (

%
)

10

20

30

40

50

60

70

80
Brightness+dark regions All features

MLP
SVM

KNN

Figure 7. Accuracy of different classifiers

3.3. Sensitivity Analysis of the Predictor

Figures 5 and 6 show the sensitivity of the selection pre-
dictor with respect to the feature combinations. We observe
that with the addition of brightness to a combination of fea-
tures, the accuracy improves by 11 − 40%. Similarly, with
the addition of the percentage of dark regions to the feature
combinations, the accuracy improves by 10 − 28%, with
the exception of the feature combination of contrast and ho-
mogeneity. This shows that the chosen features are able to
accurately capture the texture and occlusion information of
the frames.

3.4. The Confidence Predictor

As explained in the main paper, we formulate the confi-
dence prediction as a regression task, where the confidence
is a value between 0 and 100%: defined as 100 − %3 −

pixelerror. Table 5 shows the mean absolute error (MAE)
of the predicted confidence value by the decision tree based
confidence predictor for different weather scenarios. The
MAE varies between 0.25%-7.3%, suggesting that the con-
fidence is predicted accurately and can provide determinis-
tic cues to switch to higher level control.

Cloud Rain Fog Snow Frost Dropout Kitti
MAE 3.7 2.9 5 3.6 7.3 0.36 0.25

Table 5. Mean Absolute Error of the confidence predictor for dif-
ferent scenarios

4. Evaluation Details
4.1. Analysis of the Disparity Estimation Error in a

Self-Driving Scenario

In this section, we analyze the effect of error in the dis-
parity estimation in a self-driving scenario. Any car has to
maintain a half speedometer distance (equivalent to 1.8 sec-
onds) [5] from the vehicles in front of it to allow a safety
buffer time. Considering the average speed of a car to be 70
km/hr, the safe braking distance that a vehicle should main-
tain is 38.8 m. Now let us calculate the error in estimating
the depth using the error in disparity. As explained in Sec-
tion 2 of the main paper, depth is inversely proportional to
disparity. Differentiating the equation from Section 2 with
respect to disparity (d), we get ∂Z = − (b×f).∂d

d2 . Replacing
d by f × b/Z, we get ∂Z = −Z2.∂d

b×f . This equation relates
the error in depth with the error in disparity. For the images
in the KITTI dataset, f = 721 pixels and b = 0.54 m.

As an example, we consider an image (KITTI training
image 29) with the snow augmentation. We consider the
car in the scene in image 29. The real depth of the car is
46.29 m from the camera. We obtain a disparity error of
1.74 pixels using Highres and 0.37 pixels using SGM for
the car pixels. This translates to 9.53 m and 2.02 m error in
depth using Highres and SGM, respectively. Now using the
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Figure 8. Results of disparity estimation on KITTI-2015 training images. The first column shows the left image of the stereo image pair.
The second and the third columns show the disparity map obtained by Highres [10] and SGM [2], respectively.

Dark regions HistogramRGB

Figure 9. Visualization of some features of KITTI-2015 training images. The first column shows the left image of the stereo image pair.
The second and the third columns show the dark regions (in white) and the histogram of the grayscale image, respectively.

Highres scheme, we will consider that the vehicle in front
is at a depth of 55.82 m and we assume we have a margin
of 17.02 m (considering the braking distance of 38.8 m) and
can safely accelerate. However, in reality after covering this
margin, the real depth would have become 29.27 m (46.29
m - 17.02 m), which reduces our safety buffer time to apply
brakes to 1.3 s. Contrarily, using PredStereo to predict that
SGM is better for the current image frame, we would have
reduced the safety buffer time to 1.7 s. A similar situation
is observed for the snow-augmented image 182. There the
depth error is as large as 44 m using Highres while it is only
0.79 m using SGM.

4.2. Qualitative Evaluation

Figure 8 shows the disparity maps of some images taken
from the KITTI-2015 training dataset. We show these re-
sults on the KITTI-2015 training set because of the unavail-
ability of the ground truth for the test dataset and the sub-
missions to the evaluation server allowed for the new algo-
rithms. We use the same evaluation script as available on
the KITTI evaluation server.

Figure 9 shows the features of some images taken from
the KITTI-2015 dataset. The first column shows the RGB
images. The second column shows the dark regions of the



image in white color. The third column shows the histogram
of the grayscale version of the RGB image. It shows the dis-
tribution of the pixel intensities in the image. A distribution
skewed to the left side indicates the dominance of darker
pixels.

4.3. Novelty vis-a-vis Related Work

In the last few years, the pendulum of innovation has
swung towards the side of CNNs disproportionately. How-
ever, off late, there is an increased realization that traditional
algorithms have advantages in terms of accuracy particu-
larly when we have complex features and a large amount of
occlusion. Hence, we would like to conjecture that hybrid
models such as ours will gain prominence in the future.
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