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1. Qualitative Analysis of Low Frequency Component of adversarial data at different Radius
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Figure 1. Visually demonstrating the trade off between discriminability and adversarial contamination. Our correction module suitably
handles it through the proposed Algorithm 1 in the main draft by selecting LFC in the spatial domain at optimal radius (r∗) having high
Discscore and low AdvContscore i.e. max radius at which Discscore dominates over AdvContscore. At radius (r∗ + 1), the adversarial
contamination starts strongly influencing the predictions of pretrained model (Tm) and consequently Tm’s prediction for all subsequent
radius remains same as the detected adversarial image’s prediction. As shown, r∗ + 1 is 14 and 12 in the top and bottom row respectively.
Thus, we select the radius(r∗) as 12 and 10 in these cases and the corresponding LFC in the spatial domain when passed to the model (Tm)
yields correct predictions.

*denotes equal contribution.



2. Performance of Proposed Detection Module using different Arbitrary Datasets
As described in Sec. 4.1 in the main draft, the target detector model Ft is trained by adapting the source-detector model

Fs. The model Fs comprises of Sm and Ladvdet where Sm is trained on an arbitrary dataset Darbitrary . Hence, to assess
the effect of the choice of Darbitrary on the detection module and consequently our proposed method DAD (combined
detection and correction), we conduct experiments on two distinct source datasets for each target dataset (i.e. CIFAR-10 and
FMNIST) in addition to the results provided on TinyImageNet [1] (as source dataset) in the Table 1 in the main draft. We
perform experiments with FMNIST and MNIST as Darbitrary for CIFAR-10, while MNIST and CIFAR-10 as Darbitrary

for FMNIST. Similar to the results presented in Table 1 in the main draft, we observe from Table 1 (shown below) that we
achieve impressive detection accuracy across both the target datasets for each corresponding source dataset (Darbitrary).

Target Dataset Source Dataset (Arbitrary Data) Detection Accuracy Clean Accuracy Adversarial Accuracy

CIFAR-10 MNIST 93.03 99.98 86.08
FMNIST 93.54 99.85 87.23

FMNIST MNIST 88.51 99.03 77.99
CIFAR-10 84.41 84.07 84.75

Table 1. Results (in %) of our proposed detection module comprising clean and adversarial detection accuracy along with overall detection
accuracy on Auto Attack, are reported for different target datasets (Dtest, i.e. CIFAR-10 and FMNIST). For each target dataset, we also
vary the source dataset (Darbitrary) which is completely different and arbitrary to the target dataset in terms of dissimilar semnatics and
non-overlapping categories.

3. Combined (Detection and Correction) Performance on other attacks
In order to evaluate the efficacy of our proposed approach (DAD) across a wide variety of attacks, we extend the analysis

on combined performance presented in Sec. 6 and Fig. 3 of the main draft on the state-of-the-art Auto Attack to other popular
attacks such as PGD and IFGSM. We observed from Table 2 that we achieve a respectable adversarial accuracy of more than
35% on CIFAR-10 and more than 21% on FMNIST across architectures (Resnet-18 and Resnet-34) on both the attacks while
maintaining reasonable clean accuracy.

PGD IFGSMDataset Model Clean Accuracy Adversarial Accuracy Clean Accuracy Adversarial Accuracy
resnet18 89.01 36.38 85.49 35.44CIFAR-10 resnet34 88.28 37.92 88.61 31.94
resnet18 90.09 21.29 88.17 23.15FMNIST resnet34 90.45 21.79 90.57 22.21

Table 2. Performance of our proposed method (DAD) on PGD and IFGSM adversarial attacks where we report the overall clean and
adversarial accuracy (in %) across different architectures i.e. Resnet-18 and Resnet-34 for CIFAR-10 and FMNIST.

4. Combined (Detection and Correction) Performance on MNIST
In this section, we evaluate our proposed combined module (detection module followed by correction module) solution

strategy, i.e., DAD on the MNIST dataset [2], apart from FMNIST and CIFAR presented in Sec. 6 (Figure 3) of the main
draft, to further validate our framework’s performance.

We provide combined results on three distinct choices of Darbitrary i.e. CIFAR-10, FMNIST, and TinyImageNet for
our target dataset MNIST (Dtest). We observed (in Table 3) that we achieve a significant boost in the adversarial accuracy
across all three choices, without compromising much on the clean accuracy. These results verify that DAD can achieve good
performance on a wide range of target datasets (Dtest) for different choices of the source datasets (Darbitrary). Please note
the clean accuracy and adversarial accuracy of Tm (resnet18) without our framework was 99.29% and 0.00% respectively
against state-of-the-art Auto Attack.



Auto AttackSource (arbitrary)
Dataset Model Clean Accuracy Adversarial Accuracy

CIFAR-10 resnet18 90.46 34.77
FMNIST resnet18 96.12 31.15

TinyImageNet resnet18 90.29 33.19
Table 3. Results (in %) on MNIST using our proposed DAD framework containing detection and correction modules. In the detection
module, the target detection model (Ft) is obtained by adapting the source detection model (Fs) using source-free UDA. The model Sm is
appended with detection layers to form Fs. So, we also report the performances for different choices of dataset Darbitrary (i.e. CIFAR-10,
FMNIST and TinyImagenet) on which Sm is trained.

5. Attack Parameters for various arbitrary datasets

Source/arbitrary datasets ε εstep Number of iterations
TinyImageNet 8/255 2/255 20

MNIST 0.3 0.01 100
CIFAR-10 8/255 2/255 20
FMNIST 0.2 0.02 100

Table 4. The parameter values for PGD attack taken across different datasets for creating the adversarial dataset (Aarbitrary).

6. Distribution of selected radius across samples
As motivated in the Sec. 4.2 of the main draft, our correction Algorithm 1 estimates a suitable radius (r∗) entirely at the

test time for each incoming sample without assuming any prior knowledge either about the training dataset or the adversarial
attack. We demonstrated the importance of selecting r∗ optimally in Table 3 of the main draft by comparing our correction
algorithm’s performance with a random baseline (R.B.) (wherein a random radius is selected for each sample). We observed
that although R.B.’s performance varied across datasets (being higher for CIFAR-10 than FMNIST), it was comfortably
outperformed by our correction algorithm.
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Figure 2. Distribution of radius selected by our proposed correction module on Auto Attack adversarial samples across different target
datasets i.e. FMNIST, CIFAR-10 and MNIST.
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Figure 3. Distribution of radius selected by our proposed correction module on PGD Attack adversarial samples across different target
datasets i.e. FMNIST, CIFAR-10 and MNIST.
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Figure 4. Distribution of radius selected by our proposed correction module on IFGSM Attack adversarial samples across different target
datasets i.e. FMNIST, CIFAR-10 and MNIST.

In order to investigate the selection of r∗ from another perspective, we plot the frequency distribution of r∗ for various
attacks on Resnet-18 (Tm) trained on multiple datasets as shown in Figures 2, 3 and 4. We observe that for MNIST and
FMNIST datasets r∗ is majorly selected at a lower radius, whereas for the CIFAR-10 dataset the frequency distribution
loosely resembles the uniform distribution. This explains the decent performance of R.B. on CIFAR-10 in Table 3 of the
main draft. More importantly, the figures indicate that r∗ can significantly vary across datasets (MNIST/FMNIST vs CIFAR-
10). Moreover, r∗ can even vary across samples of a particular dataset (For e.g. in CIFAR-10 samples, different radius are
almost equi-proportionally selected). Our algorithm is able to accurately estimate r∗ on a sample-by-sample basis without any
prior knowledge about the training dataset or the corresponding adversarial attack, as evident by the impressive performance
shown in Table 2 of the main draft.

We further compare our performance of a) carefully choosing a constant radius (for all the samples) with b) sample-level
radius selection (finer-granularity control) i.e. r∗, through our proposed algorithm. We select the constant radius as r = 4
since it’s the most frequently selected radius by our algorithm across different types of attacks and datasets (as shown in



Figures 2, 3 and 4). We observe that the sample-level selection strategy often provides significant improvements (shown in
Table 5). For e.g. in CIFAR-10 we observe ≈ 16 − 18% improvement by our algorithm over choosing a constant radius
(r = 4). However, we do notice on the MNIST dataset we observe slightly lower performance. Please note that our proposed
algorithm obtains non-trivial improvement in adversarial accuracy even when choosing a constant radius or selecting radius
at the sample level. We prefer the sample-level radius selection approach, as we often obtain a large gain in performance
across a number of architecture, attack, and datasets configurations.

Dataset Attack
Performance (in %)

(r = 4)
Performance (in %)

(r∗ selected at sample level)

CIFAR-10
pgd 22.08 39.39

ifgsm 22.26 38.49
auto attack 22.37 40.25

FMNIST
pgd 27.16 32.22

ifgsm 27.84 32.38
auto attack 30.74 35.80

MNIST
pgd 47.59 44.6

ifgsm 48.63 44.76
auto attack 48.76 45.81

Table 5. Performance comparison of a) choosing a constant radius r = 4 v/s b) sample-level selection strategy i.e. r∗
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