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Figure 1: PAA head amended with Conditional Objectness
Prediction (COP)

Appendices
A. Conditional Objectness Prediction
A.1. Motivation and Network Architecture

Since object detection performs classification and
localization concurrently, their quality must be consistent.
For example, a prediction with a high classification
probability but low IoU box yields a false positive, while
the reverse induces false negative. However, single-stage
detectors implement the branches independently, typically
each with 4 stacked convolutions. During training and
inference, there is no connection between them.

Furthermore, although the two branches have the
same computation and feature extraction capacity, the
localization receives significantly less training feedback
than the classification. This is because most of the
samples are negative, which have no box targets for training
localization, hence are discarded during gradient backward.
Recent methods also add auxiliary branches to predict the
localization quality, such as IoU [12, 5], Centerness [6, 14,
11], but is trained only on positive samples. In addition, the
positive samples of the same object are often connected and
appear in a small local window. However, they are treated
independently during non-maxima suppression.

Therefore, we propose adding an auxiliary Conditional
Objectness Prediction (COP) to the localization branch. It
is similar to the Regional Proposal Network (RPN) of two-
stage detector [8] but with renovations, as shown in Fig.
1. Concretely, at each anchor ai, we predict the objectness
scores {oki }3×3

k=1 of its 3×3 nearest neighbors to capture their
spatial correlation. The final classification probability is the
dot product of the objectness {oki } and the corresponding
3× 3 local window of the classification prediction {pki }3×3

k=1

p(ai) =
1

9

3×3∑
k=1

oki p
k
i , (1)

where oi and pi are the confidence score (i.e. after

Sigmoid) of the objectness branch and classification branch,
which are supervised implicitly and mutually through COP
product during gradient back-propagation. Therefore, we
can fuse and jointly train the branches, make the training
consistent with inference. Consequently, all samples in the
localization now receive gradient feedback.

Our COP shares a common with the Implicit Object
recently introduced in [16, 2], as they are both trained
jointly with the classification branch. However, our
motivation and implementation are different: (i) We believe
features in the regression branch are also helpful to predict
objects in the class-agnostic manner, similar to the RPN
head in Faster-RCNN, and should not be discarded. COP
is introduced to distribute gradient feedback to all samples
in the localization branch. (ii) We implement COP as
Conditional Convolution [13, 10], where the weights are
generated dynamically for each sample. Hence, we can
embed the local relationship between the samples to reduce
false-positive prediction.

A.2. Ablation Study

We investigate the effectiveness of the Conditional
Objectness (COP) with different backbones, including
EfficientNet-B0 (Eff-B0) [9], RepVGG-A0 (A0)[3],
ResNet18 (R18), and ResNet50 (R50)[4], and compare it
with IoU prediction and Implicit Object prediction (IOP).
For easy comparison, we use the baseline PAA method,
that has IoU prediction by default. Table 1 summarizes the
results.

Table 1: Compare different auxiliary predictions: IoU,
Implicit Object Prediction (IOP), and Conditional
Objectness Prediction(COP) with different backbones.
(*) denotes the branch is trained but not used during
inference.

Auxiliary Prediction mAP
IOU IOP COP Eff-B0 A0 R18 R50
✓ 32.4 34.0 35.8 40.4
✓ ✓ 33.4 34.7 36.7 41.6
✓ ✓ 33.5 34.8 36.9 41.6
* ✓ 33.4 34.8 36.7 41.5
* ✓ 33.5 34.8 36.9 41.6

✓ 33.3 34.8 36.6 41.1
✓ 33.4 34.7 36.9 41.2

At first, we add the IOP or COP to the default
PAA head, and observe that both IOP and COP
can improve the baseline with considerable margins.
For the Eff-B0, A0, R18, R50 backbones, IOP
increases +1,+0.7,+0.9,+1.2AP, and COP increases
+1.1,+0.8,+1.1,+1.2AP, respectively. COP and IOP
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Figure 2: Error analysis using TIDE [1] toolbox of the
models PAA, CoLAD, and CoLAD-COP with the same backbone
ResNet50 on the MS COCO minval set.

perform equally on R50, but COP is slightly better for
small backbones Eff-B0(+0.1AP), A0 (+0.1AP), and R18
(+0.2AP).

Secondly, we try dropping the IoU prediction during
inference and use only IOP or COP, and observe that the
results remain almost unchanged (4th and 5th rows).

However, when we train the models without the IoU
branch, the performance is dropped more severely for
ResNet50 backbone (6th and 7th rows). This proves that IoU
is still helpful as deep supervised signal for the regression
branch in training, but can be safely omitted during infer.

B. Prediction Error Analysis
Beyond evaluating the mAP metric, we use the TIDE [1]

toolbox to analyze the prediction errors of the three models,
PAA, CoLAD, and CoLAD-COP, with the same backbone
ResNet50.

As shown in Fig. 2, CoLAD and CoLAD-COP help
reduce the localization error of the baseline PAA from
6.22% to 5.79% and 5.77%, respectively. CoLAD also
reduces the classification error by 3.04%. These indicate
that the dynamic mechanism in CoLAD is effective to guide
the network to learn a good label assignment, which results
in low classification and localization error. In addition,
CoLAD can recall more objects, since the false negative
percentage is reduced from 11.5% for PAA to 10.85% for
both CoLAD and CoLAD-COP. Finally, the introduction
of COP can better suppress noisy prediction, as the false
positive ratio is reduced from 23.01% to 22.26%.

C. Compare with other distillation methods
Head-to-head comparison of distillation methods for

object detection is not easy, since each method is typically
developed for a particular detector. Therefore, for reference
purpose only, we select LD [15] to compare, since it is based
on the SOTA single-stage detector Generalized Focal (GF)

[7, 6], which is inline with us but has higher performance
than our PAA baseline. However, we emphasize that the
two methods address different problems. LD[15] focuses on
localization distillation and is applied particularly for GFL
detector, while we address the label assignment. Therefore,
the two methods can be combined.

Table 2: Compare our LAD techniques to Localization
Distillation (LD) [15] for different ResNet backbones. T
and S denote teacher and student networks. LAD is based
on PAA[5] and LD is based on GF[7]. The results are
compared for student networks w.r.t. its baseline on COCO
test set.

T S PAA LAD CoLAD SoLAD GF LD
R50 R18 35.8 36.9 36.5 38 36.0 36.1

R101 R18 35.8 36.8 36.6 38.4 35.8 36.5
R101 R50 40.4 41.6 41.3 42.4 40.1 41.1

Table 2 compare the two methods using the same
teacher and student’s backbones. It is obvious that LAD
and CoLAD are superior to LD in all cases. Moreover,
our LAD/CoLAD is very simple and can be adapted
quickly to any single-stage detectors without architecture
modification, and not restricted to Generalized Focal
detector [7, 6]. This shows how flexible and effective our
method is compared to other distillation methods, such as
feature mimicking.
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