RLSS: A Deep Reinforcement Learning Algorithm for Sequential Scene
Generation (Supplemental Material)

1. Indoor Planning

In indoor planning, our task is to place furniture objects
given specific room boundaries. We consider three types of
rooms: bedrooms, living rooms, and offices.

The reward function is a mapping fromr : S x A — R,
where S is the state space and A is the action space. For
a specific action a; € A selected in a state s; € S, the
reward is denoted with r(s;, a;). The reward function fol-
lows common pattern introduced in the paper. The mapping
r: (84, a;) — 1(8;,a;) is calculated in the following order

-1, if CheckFailureCondition(s;) = True,
—0.1, elseif CheckElementCountCondition(s;, a;) = True,
rs+ 9, elseif Search(s;, a;, 3) = True,
r(si,a;) == { ro + 0, elseif Search(s;, a;,2) = True, (1)
r1+ 0, elseif Search(s;,a;,1) = True,
1, if CheckSuccessfulCondition(s;) = True,

—0.1, otherwise.

The functions returning a Boolean value are defined here-
after:

¢ CheckFailureCondition(s;, a;) returns True if the fail-
ure condition is fulfilled. Failure condition in this
problem is 0.75 percentage of the room area or more is
occupied by furniture and still plausible arrangement
is not generated.

¢ CheckElementCountCondition(s;, a;) returns True if
the last object exceeds the predefined maximum
amount for its category.

¢ Search(s;, a;,3) returns True if after placing the last
object some existing structure is completed in the
room. Structure complexity in the completed structure
should be greater or equal 3.

* Search(s;, a;, 2) returns True if the last object is placed
in the existing substructure. Structure complexity is
greater or equal 2.

* Search(s;, a;, 1) returns True if the last object is placed
in the room. Structure complexity is equal 1.

Table 1. Parameter values used for indoor planing.

Parameter Value

T3 0.3
) 02
T 0.1

* CheckSuccessfulCondition(s;) returns True if the suc-
cessful scene condition is reached. The successful con-
dition depends on the area of the room and the total ac-
cumulated reward: (total_object_area/room_area >
0.4 or total-reward >= R_thr) and
important_object_fnd == True. Where
total_object_area is total area of all objects in
the room, room_area is room area and R_thr
threshold reward. In order to find the criteria for
a “successful scene”, we analyze human generated
scenes and for each room calculate its score (de-
pending existing objects in this room), which is
the total reward required to generate this scene by
our definition. R_thr is average of these scores.
important_object_fnd is True if important object(s)
is placed in the room.

Search(s;, a;, option) function only analyses existence of
a substructure which also should satisfy hard constraints,
then PlaceObject(s;, a;, option) function is called to place
this object with given option, where option € {1,2,3}.
d > 0 (0 = 0.3) if important object for this room is first time
added to the scene, otherwise it is equal to zero. Important
objects for bedrooms is bed, for living rooms is sofa, for
office is desk.

We use one representative for each object category dur-
ing the training process. In the inference time for each gen-
erated scene wide variety of models are used. Models are
selected based on whether they violate hard constraints or
not. Such a representation makes it possible for a network
to learn efficiently.

Following substructures are used to generate different
rooms:

e Bedrooms: 1) double bed, nightstand, ottoman and



laptop 2) desk, chair (armchair, office chair) and lap-
top 3) dressing table and ottoman 4) wardrobe cabinet
and (dresser, shoes cabinet) 6) single bed, nightstand
and table lamp 7) double bed and floor lamp 8) single
bed and dresser 9) dresser and dressing table 10) dou-
ble bed and shelving 11) bunker bed and floor lamp
12) tv stand and loudspeaker 13) sofa and coffee table
14) plant 15) hanger 16) baby bed 17) pedestal fan 23)
kitchen cabinet

* Living rooms: 1) sofa, (coffee table, floor lamp), lap-
top 2) piano and ottoman 3) sofa and plant 4) coffee
table and chair 5) coffee table and ottoman 6) shelv-
ing 7) fireplace 8) wardrobe cabinet 9) nightstand 10)
dresser 11) tv stand and tv 12) hanger 13) plant

» Offices: 1) desk, (office chair, armchair) and laptop
2) sofa and (coffee table, plant) 3) tv stand and loud-
speaker 4) piano and ottoman 5) wardrobe cabinet and
dresser 6) desk, office chair and armchair 7) shelving
8) plant 9) wardrobe cabinet 10) floor lamp 11) work-
place 12) nightstand 13) whiteboard 14) dresser

Initially, we find plausible placements and orientations
for each object. First object in the structure is placed ac-
cording to this domain knowledge. Object positions and
orientations are uniformly selected to increase variety. Each
substructure has its own placements relative to a room
boundary. During the training one of these placements se-
lected based on hard constraints and existing objects in the
room. Object types and orientations can be adjusted to in-
crease diversity.

2. Angry Birds Level Generation

For generating Angry Birds levels, we employ as a pre-
defined design objective to have at least 4 closed structures
in each scene, which are the defense houses to place pigs.
The game environment consists of an 800 x 800 pixel rect-
angle. To make levels more interesting, we symmetrically
place two instances of each object for elements which are
not in the middle.

The reward function is a mapping fromr : S x A — R,
where S is the state space and A is the action space. For
a specific action a; € A selected in a state s; € .S, the re-
ward is denoted with r(s;, a;). The mapping r : (s;,a;) —
7(s;, a;) is defined as follows:

-1, if CheckFailureCondition(s;) = True,
—0.1, elseif CheckElementCountCondition(s;, a;) = True,
T4, elseif Search(s;, a;,4) = True,
(50, i) = rs3, elseif Search(s;, a;, 3) = True, (2)
v o, elseif Search(s;, a;, 2) = True,
r1, elseif Search(s;, a;, 1) = True,
1, if CheckSuccessfulCondition(s;) = True,
—0.1, otherwise.

We divide all object categories into two groups by their
size, first group object width > object height, and all
other objects considered to be the second group. Some of
the following functions work with first or second group ob-
jects only. The functions returning a Boolean value are de-
fined hereafter:

¢ CheckFailureCondition(s;, a;) returns True if the fail-
ure condition is fulfilled. If the plausible scene is not
generated after maximal episode length (60 for this
case), then this generation is considered failure.

¢ CheckElementCountCondition(s;, a;) returns True if
the last object exceeds the predefined maximum
amount for its category.

* Search(s;, a;,4) returns True if placing the last object
creates a closed structure to place a pig. Works only
with the first group objects. Structure complexity is
equal to 4 (including pig).

* Search(s;, a;, 3) returns True if placing the last object
creates a closed structure (not necessarily big to place a
pig). Works only with the first group objects. Structure
complexity is equal to 3.

* Search(s;, a;, 2) returns True if it is possible to verti-
cally pile up the last object to make it in equal height
with another object. Structure complexity is equal to
2.

* Search(s;,a;, 1) returns True if there is enough space
to place the last object or two of them (will be ran-
domly chosen) on the ground or on top of other object
or if it is possible to place the last object on top of
another object not violating the hard constraint (stabil-
ity). Structure complexity is equal to 1.

* CheckSuccessfulCondition(s;) returns True if the suc-
cessful condition is reached. The successful scene con-
dition in this case: total_reward > R_thr In order to
find the criteria for a “successful level”, we analyze
Angry Birds game levels and for each level calculate
its score (depending existing objects in this level and
their position), which is the total reward required to
generate this scene by our definition. R_thr is average
of these scores.

As in the previous problem, Search(s;,a;,option)
function only analyses existence of a substructure, then
PlaceObject(s;, a;, option) function is called to place this
object with given option, where option € {1,2,3,4}. De-
tailed network architecture is given in Fig.[I] Some exam-
ples of generated structures for Angry Birds game given in
the Fig. 2|



Image Object existence Object availability Scene condition Step indicator
[1,128, 128] [N] [N] [11*N [N]
l h 4 l l
FC+RelU
¥ 5
~ [256]
3x3Conv+4xdMaxPool+BN+RelLU Concat
[16, 32, 32] [3*N]
M l y
g ™y
3x3Conv+4xdMaxPool+BN+RelU FC[;C-?;]LU
[32, 8, 8]
i l iy
~
3x3Conv+4dxdMaxPool+BN+ReLU
[64, 2, 2]
Py
] |
Flatten /7 \:
[256]
Concat
[768]
FC+RelU FC+RelU
[512] [512]
FC FC
[1] [N]

Figure 1. Neural network architecture. N refers to the number of objects.

Parameter Value

Ta 0.5
T3 0.2
T2 0.1

1 0.05

Table 2. Parameter values used for level generation.







