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1. Qualitative Results
Fig 1 shows some qualitative results of our proposed fu-

sion method on KITTI test set. Red bounding boxes rep-
resent false positive detections from PV-RCNN [4] that are
deleted by our Fast-CLOCs, green bounding boxes are true
positive detections that are confirmed by Fast-CLOCs.

Incorporating image visual information can help remove
LiDAR false positive detections and confirm LiDAR true
positive detections, as shown in Fig 1. The image pro-
jection region of a false positive detection in the LiDAR
point cloud, will be classified and usually rejected as a de-
tection through our 3D-Q-2D detector. Then Fast-CLOCs
can leverage this inconsistency to remove the false positive.
Objects that are double confirmed by LiDAR detector and
3D-Q-2D image detector will be kept by Fast-CLOCs.

2. Failure Cases Analysis
There are mainly two types of failure cases for Fast-

CLOCs. One is mistakenly removing the true positives, the
other is fail to delete false positives. These failure cases
happen in the scenarios in which objects are heavily oc-
cluded, at long distance or in poor lighting conditions. Fig 2
shows some failure examples. In fail case#1 and case#2,
LiDAR-only detector detects the true positive cars. But the
true positives are suppressed by our 3D-Q-2D detector due
to high level of occlusion (case#1) and poor lighting condi-
tion (case#2) in the image plane. So Fast-CLOCs fusion
removes these true positives. In fail case#3 and case#4,
LiDAR-only detector detects the cars but with wrong poses,
so they are false positive detections. But these false positive
detections are not rejected by our 3D-Q-2D detector. Be-
cause parts of the cars are visible in the image plane, the
3D-Q-2D confirms them as cars but fails to provide the full
sizes of the cars in the image plane. Fast-CLOCs fusion
therefore keeps these false positive.

Detecting objects under occlusion is an open problem
in computer vision community. Designing better detection
networks and collecting more training data with these cor-
ner cases could be one direction to resolve this issue. But
it would require more computing resources. We believe
adding temporal information from multiple frames would
be a simpler direction.

3. Ablation Study on Minor Modifications of
the Fusion Network

We made two minor modifications on the CLOCs [3] fu-
sion network. One is adding another flag channel to high-

Flag channel Residual blocks
3D AP (%)

easy moderate hard
92.52 85.55 82.64

✓ 92.93 85.77 82.97
✓ 92.83 85.82 82.98

✓ ✓ 93.18 86.01 83.07

Table 1: Ablation studies of modifications in the fusion net-
work on KITTI validation set. PV-RCNN is applied as the
3D detector in this experiments. We add a flag channel to
highlight whether a 3D detection overlaps with at least one
2D detection. Residual blocks instead of standard 1×1 con-
volutional layers to slightly improve the performance. The
first row represents the performance for original CLOCs fu-
sion network. As shown in the table, adding flag channel
and using residual blocks slightly improve the detection per-
formance.

light whether a 3D detection overlaps with at least one 2D
detection. The motivation is that we want to keep the 3D de-
tection candidate that has no 2D detections overlap with it.
Adding this channel also helps the network distinguish this
case from other examples with very small IoU and 2D con-
fidence score. The other modification is we apply Residual
blocks [2] instead of standard 1× 1 convolutional layers to
slightly improve the performance. The ablation studies re-
garding these changes are present in Table 1. The first row
in Table 1 without Flag channel and residual blocks rep-
resent the performance for original CLOCs. As shown in
the Table 1, adding flag channel and using residual blocks
slightly improves the detection performance.

References
[1] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3354–3361. IEEE, 2012.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[3] Su Pang, Daniel Morris, and Hayder Radha. Clocs: Camera-
lidar object candidates fusion for 3d object detection. Pro-
ceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

[4] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-



Figure 1: Qualitative results of our Fast-CLOCs on KITTI [1] test set compared to PV-RCNN [4]. Red bounding boxes are
false positive detections from PV-RCNN that are removed by our Fast-CLOCs. Green bounding boxes are confirmed true
positive detections. The upper row in each image is the 3D detection projected to image, the others are 3D detections in
LiDAR point clouds.



(a) Fail Case#1: Fast-CLOCs removes a true positive from LiDAR
3D detector.

(b) Fail Case#2: Fast-CLOCs removes a true positive from LiDAR
3D detector.

(c) Fail Case#3: Fast-CLOCs fails to remove a false positive from
LiDAR 3D detector.

(d) Fail Case#4: Fast-CLOCs fails to remove a false positive from
LiDAR 3D detector.

Figure 2: Some failure cases. (a) and (b): LiDAR-only detector detects the true positives (car). But the cars are suppressed by
3D-Q-2D detector due to high level of occlusion (case#1) and poor lighting conditions (case#2) in image plane. Therefore,
Fast-CLOCs fusion removes these true positives. (c) and (d): LiDAR-only detector detects the cars but with wrong poses, so
they are false positives. But these false positives are not rejected by 3D-Q-2D detector because parts of the cars are visible in
the image plane. Therefore, Fast-CLOCs fusion keeps these false positives.
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