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This document extends the network design details and
visual results presented in the main paper, which is struc-
tured as follows.

• Section 1: Network Design. We provide a detailed
breakdown of the design of our proposed Deep Affinity
Learning (DAL) network.

• Section 2: Further Details on Borůvka’s Algorithm.
We provide an explanation along with a visual example
on the advantages of using Borůvka’s Algorithm.

• Section 3: Performance Measures. In the interest
of completeness, we detail the definitions of the per-
formance measures that are used in the main paper to
evaluate the superpixel segmentation results of various
methods.

• Section 4: Supplementary Qualitative Results. We
showcase various additional visual comparisons: i)
demonstrating the advantage of our method against
other state-of-the-art superpixel methods; and ii)
showcasing the adaptiveness of our segmentation re-
sults with varying numbers of user-specified super-
pixel counts.

• Section 5: Superpixels for saliency detection. We
apply our proposed DAL-HERS technique as a prepro-
cessing step to the task of saliency detection.

1. Network Design
We provide further network design details of our Deep

Affinity Learning (DAL) network in Table 1 and Table 2.
We consider the setting where the given input image is of
size H × W , where H = 480 and W = 320. Each layer
within a side output block is interleaved by a ReLU layer,
which we omit in the table for ease of presentation.

In the first part of our DAL network, we obtain an in-
termediate affinity map (out3c) at the end of the three Res-
Blocks. This is used as input to the second stage, which

mainly consists of the HED network structure (see Table 2)
for further boundary information learning. Within the HED
structure, the five side outputs as obtained at the end of each
of the five Bilinear Interpolation (BI) steps all have size
8 × 480 × 320. They are concatenated together to form
a tensor of size 40 × 480 × 320, which serves as input to a
convolutional layer (fusion layer) that converts 40 channels
down to 8 channels. Finally, the learned affinity map is ob-
tained by applying the Sigmoid function to the output of the
aforementioned fusion layer.

2. Further Details on Borůvka’s Algorithm

In the main paper, we present a graph-based framework
which consists of a neural network for deep affinity learn-
ing, and an efficient superpixel segmentation method HERS
for obtaining highly adaptive superpixels efficiently. An il-
lustration of HERS is displayed in Figure 1. It is clear that
Borůvka’s algorithm already arrived at the correct segmen-
tation at the end of iteration 1, whereas the lazy greedy al-
gorithm has only connected two nodes together.

(a) (b) (c)

Figure 1: A simple example that illustrates the efficiency
and parallelisability of Borůvka’s algorithm. (a) displays an
initial graph containing six nodes and their weighted edges.
Borůvka’s algorithm, displayed in (c), only needs one it-
eration to arrive at the final partitioning, whereas the lazy
greedy algorithm [7] in (b) requires four iterations.
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3. Performance Measures
The performance of various superpixel segmenta-

tion algorithms are commonly measured by the Under-
segmentation Error (UE) [13], Achievable Segmentation
Accuracy (ASA) [7] and Boundary Recall (BR) [8]. UE
compares each computed superpixel with the ground truth
superpixel that it overlaps with the most, and measures the
“leakage” area that are not in the overlapped region. Op-
posite to UE, ASA quantifies the percentage of overlap be-
tween the segmented superpixels and the ground truth su-
perpixels. That is, ASA can be directly obtained from UE
as ASA=1-UE.

As such, we choose one out of these two and report ASA
in our experiments. Concretely, ASA can be computed as

ASA(G,L) = 1

N

K∑
k=1

argmax
Gc

|Lk ∩ Gc|, (1)

in which G = {G1, . . . ,GC} denotes the ground truth seg-
mentation, and L = {L1, . . . ,LK} denotes the segmenta-
tion given by the chosen algorithm.

Boundary Recall (BR) measures the boundary adherence
of the computed superpixels to the ground truth boundaries.
It measures the proportion of ground truth boundary pixels
that have been correctly identified by the computed super-
pixels. Concretely, BR can be computed as

BR(G,L) = TP(G,L)
TP(G,L) + FN(G,L)

, (2)

in which TP(G,L) stands for true positive, it denotes
the number of ground truth boundary pixels that have
been identified by the superpixel segmentation algorithm.
FN(G,L) stands for false negative, which denotes the re-
maining number of ground truth boundary pixels that have
not been identified.

Additionally, we also report the Explained Variation
(EV) [9] score, which quantifies the variance within an im-
age that is captured by the superpixels without relying on
any ground truth labelling. It is calculated using the follow-
ing formula

EV(L) =
∑

i (µi − µ)
2∑

i (pi − µ)
2 , (3)

where pi denotes the RGB pixel values for the i-th pixel,
µ denotes the global mean of the RGB pixel values of an
image, and µi denotes the mean RGB pixel values for the
superpixel that contains pixel pi.

4. Supplementary Qualitative Results
In this section, we provide further visual comparisons

on the BSDS500 [3] and NYUv2 [11] datasets across the

following state-of-the-art techniques: i) classic techniques:
ERS [7], SH [14], SLIC [1], SNIC [2], SEEDS [13],
ETPS [16]; and ii) deep learning techniques: SSN [6],
SEAL-ERS [12] and SP-FCN [15].

4.1. Additional visual comparisons against state-of-
the-art methods

Figures 2 displays an additional example from the
BSDS500 dataset. We note that amongst the compared
techniques, our technique presents the most visually appeal-
ing output. By visual inspection, we can notice that our su-
perpixels clearly show better segmentations of fine details
and stronger boundary adherence whilst avoiding partition-
ing homogeneous regions. In particular, several methods
including the deep learning techniques of SEAL-ERS (see
output (j)) and SP-FCN (see output (k)) often fail to cap-
ture the boundary structures. By contrast, our superpixels
are better at capturing the objects of the scene including
complex ones such as the shape of the flower in Figures 2.
Some examples of these advantages are highlighted in the
zoomed-in views.

These benefits of our technique are also observed in in-
doors scenes as displayed in Figures 3, which are taken from
the NYUv2 test set. We selected interesting samples with
complex objects of varying sizes. In Figure 3, one can ob-
serve that none of the competing techniques are able to ad-
here well to the boundaries of small objects (e.g. see the
highlighted part in the blue zoomed-in square).

4.2. Various numbers of superpixels K

In this section, we demonstrate the adaptiveness of our
superpixels with the number of user-defined superpixel
counts ranging from 200 to 1200. Figures 4 and 5 showcase
the results in terms of superpixel boundaries and in terms of
the average RGB pixel features per superpixel on an image
from the BSDS500 test set. It can be observed easily from
the view with superpixel boundaries (see Figure 4) that our
technique gradually focuses on segmenting the texture-rich
regions of the image as the user-specified number of super-
pixels increases. As a result, our superpixels are able to
provide a very accurate and smooth representation of the
original image, even with a relatively small number of su-
perpixels (see Figure 5).

Similarly, the same benefits of our superpixels can be ob-
served in indoor scenes in Figures 6 and 7. We observe that
our technique is able to delineate the main object bound-
aries in the image with 200 superpixels. With the increase
of K, our technique further outlines the fine details within
the identified objects. As a result, it is hard to even discern
the difference visually between the original image (Figure 7
(a)) and the superpixel representations of the image (see
Figure 7 (e) (f) (g)) at a first glance.



Operation Input Output Kernel
size

Stride
size

Channel
I/O Input Res. Output Res.

Conv. image out1 7 1 3/8 3× 480× 320 8× 480× 320
Ins. Norm. out1 out2 - - 8/8 8× 480× 320 8× 480× 320

Relu out2 out3 - - 8/8 8× 480× 320 8× 480× 320
ResBlock out3 out3a 3 1 8/8 8× 480× 320 8× 480× 320
ResBlock out3a out3b 3 1 8/8 8× 480× 320 8× 480× 320
ResBlock out3b out3c 3 1 8/8 8× 480× 320 8× 480× 320

HED out3c out

Table 1: Specification of the proposed Deep Affinity Learning (DAL) network structure.

Operation Input Output Kernel
size

Stride
size

Channel
I/O Input Res. Output Res.

Side Output 1 out3c hed1a 3 1 8/64 8× 480× 320 64× 480× 320
hed1a hed1 3 1 64/64 64× 486× 326 64× 480× 320

Side Output 2
Max Pooling (Kernel size = 2, Stride = 2)

hed1 hed2a 3 1 64/128 64× 240× 160 128× 240× 160
hed2a hed2 3 1 128/128 128× 240× 160 128× 240× 160

Side Output 3

Max Pooling (Kernel size = 2, Stride = 2)
hed2 hed3a 3 1 128/256 128× 120× 80 256× 120× 80
hed3a hed3b 3 1 256/256 256× 120× 80 256× 120× 80
hed3b hed3 3 1 256/256 256× 120× 80 256× 120× 80

Side Output 4

Max Pooling (Kernel size = 2, Stride = 2)
hed3 hed4a 3 1 256/512 256× 60× 40 512× 60× 40
hed4a hed4b 3 1 512/512 512× 60× 40 512× 60× 40
hed4b hed4 3 1 512/512 512× 60× 40 512× 60× 40

Side Output 5

Max Pooling (Kernel size = 2, Stride = 2)
hed4 hed5a 3 1 256/512 512× 30× 20 512× 30× 20
hed5a hed5b 3 1 512/512 512× 30× 20 512× 30× 20
hed5b hed5 3 1 512/512 512× 30× 20 512× 30× 20

Conv. 1 hed1 hed1 out 1 1 64/8 64× 480× 320 8× 480× 320
Bilinear Interpolation (BI), Output size = 8× 480× 320

Conv. 2 hed2 hed2 out 1 1 128/8 128× 240× 160 8× 240× 160
Bilinear Interpolation (BI), Output size = 8× 480× 320

Conv. 3 hed3 hed3 out 1 1 256/8 256× 120× 80 8× 120× 80
Bilinear Interpolation (BI), Output size = 8× 480× 320

Conv. 4 hed4 hed4 out 1 1 512/8 512× 60× 40 8× 60× 40
Bilinear Interpolation (BI), Output size = 8× 480× 320

Conv. 5 hed5 hed5 out 1 1 512/8 512× 30× 20 8× 30× 20
Bilinear Interpolation (BI), Output size = 8× 480× 320

Conv.
(Fusion Layer) 5 BI outputs combined out 1 1 40/8 8× 480× 320 8× 480× 320

Table 2: Specification of the HED component within the DAL network.

5. Superpixels for Saliency Detection

In this section, we present additional results on the ap-
plication of our proposed DAL-HERS technique as a pre-
processing tool for the downstream task of saliency detec-
tion [5, 4, 17]. The main purpose of this task is to extract

the most salient object from its background in an image.
One of the most classical techniques in saliency detection
is Saliency Optimisation (SO) [17]. SO first segments an
image into a number of superpixels, and then constructs an
undirected weighted graph using the superpixels as primi-
tives for further detecting the salient regions among them.



Here, the superpixels are produced using SLIC due to its
simplicity and efficiency.

To demonstrate the advantages of our proposed DAL-
HERS technique, we replace SLIC with DAL-HERS in the
saliency detection process. We report both the quantitative
comparison in Table 3 and the visual comparisons in Fig-
ure 8 in terms of the standard performance metrics on the
ECSSD dataset [10]. It can be seen from Table 3 that our
DAL-HERS technique enjoys an obvious advantage over
SLIC across all three metrics. This advantage is further
supported by the visual comparisons in Figure 8. It is clear
that the results produced using SLIC are very non-smooth
and segmented, which is due to the non-adaptive nature of
SLIC superpixels. Whereas the results produced with DAL-
HERS are smooth whilst highlighting the contours of the
most salient object in an image.

Method F -measure weighted Fβ MAE
SLIC 0.885 0.432 0.286

DAL-HERS 0.906 0.520 0.200

Table 3: Superpixels for saliency object detection.
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(a) Original. (b) Ground truth. (c) Ours.

(d) ERS. (e) SH. (f) SLIC.

(g) SNIC. (h) SEEDS. (i) ETPS.

(j) SEAL-ERS. (k) SP-FCN. (l) SSN.

Figure 2: Segmentation results on a sample image from the BSDS500 test set with 200 superpixels.



(a) Original. (b) Ground truth. (c) Ours.

(d) ERS. (e) SH. (f) SLIC.

(g) SNIC. (h) SEEDS. (i) ETPS.

(j) SEAL-ERS. (k) SP-FCN. (l) SSN.

Figure 3: Segmentation results on a sample image from the NYUv2 test set with 200 superpixels.



(a) Original image. (b) K = 200. (c) K = 400.

(d) K = 600. (e) K = 800.

(f) K = 1000. (g) K = 1200.

Figure 4: Segmentation results using our method on an image from the BSDS500 test set with varying number of superpixels.



(a) Original image. (b) K = 200. (c) K = 400.

(d) K = 600. (e) K = 800.

(f) K = 1000. (g) K = 1200.

Figure 5: Segmentation results using our method on an image from the BSDS500 test set with varying number of superpixels.
Each segmented image is represented with the average RGB pixel values of the corresponding superpixel.



(a) Original image. (b) K = 200. (c) K = 400.

(d) K = 600. (e) K = 800.

(f) K = 1000. (g) K = 1200.

Figure 6: Segmentation results using our method on an image from the NYUv2 test set with varying number of superpixels.



(a) Original image. (b) K = 200. (c) K = 400.

(d) K = 600. (e) K = 800.

(f) K = 1000. (g) K = 1200.

Figure 7: Segmentation results using our method on an image from the BSDS500 test set with varying number of superpixels.
Each segmented image is represented with the average RGB pixel values of the corresponding superpixel.



Figure 8: Saliency detection results on sample images from the ECSSD dataset [10] with 200 superpixels. From left to right:
original image, ground truth segmentation mask, SLIC, DAL-HERS.


