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Abstract

This supplementary material is divided into eight sec-
tions. The first section provides additional details and ab-
lation experiments on the design decisions underlying the
Relative Norm Alignment (RNA) loss formulation. In the
second section, we explain the effects of minimizing the an-
gular distance between features instead of their norms (as
in LRNA). We then show the effects of norm balancing at
the class level. Further experiments follow to prove that the
benefits of RNA-Net are independent of the fusion strategy
and backbone used. We then present additional details on
the EPIC -Kitchens-100 setting, squeeze-and-excite adap-
tation, Non-Local gating [19], and transformer-based ap-
proaches [3, 13] referenced in the main paper, including
an illustration of the architecture used in the unsupervised
(UDA) setting. Finally, we present additional qualitative
results.

1. RNA additional details
1.1. RNAsub

An alternative formulation of RNA, in a way similar to
HNA, is the “subtraction” as follows:

Lsub
RNA = (E[h(Xa)]− E[h(Xv)])2. (1)

While even this formulation does not introduce any addi-
tional hyperparameter, it suffers like HNA from a poten-
tially significant high loss value, which results in highly
sensitivity to λ (Figure 7 of main paper).

1.2. Additional Ablation on λ variations

We illustrate in Figure 1 how performances vary based
on the weight loss λ assigned to LRNA. We show the
variations in terms of accuracy based on the value of λ
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Figure 1. Difference in terms of performance (average Top-1 Ac-
curacy (%)) based on the value of λ used to weight LRNA on
single-DG, multi-DG and supervised setting.

on all single-source DG, multi-source DG and supervised
settings, comparing the results against the standard source-
only, DeepAll and supervised baseline respectively. LRNA

outperforms the baseline results on all choices of λ, demon-
strating that our loss is not sensitive to λ variations and con-
firming our choice of the dividend/divisor structure.

1.3. Temporal Window Ablation

In our experiments, audio length ≈ RGB length, since
the 16 frames are strided by 2 as in [14]. We show in the Ta-



Audio Length D1,D2→D3 Audio Norm

DeepAll [0.64s] 52.19 % 29.92
RNA-Net [0.64s] 54.31 % 6.80
DeepAll [2.56s] 51.60 % 30.91
RNA-Net [2.56s] 53.18 % 6.13
DeepAll [1.28s] 51.47 % 30.16
RNA-Net [1.28s] 55.88 % 5.92

Table 1. Comparison in terms of accuracy (%) and mean fea-
ture norms between DeepAll and RNA-Net with different audio
lengths.

ble 1 how performance and norms vary in correspondence to
variations of audio length. The improvement over the base-
line is guaranteed in all configurations, confirming that the
norm unbalance does not depend on the temporal window.

2. Comparison with other losses

This section details the experiments reported in Table 2
and aims at analyzing the effect of other losses that mini-
mize the angular distance between features rather then their
norms.

We refer to these approaches as Cosine Similarity Loss,
Orthogonality Loss and Euclidean loss (we refer to them as
CosSim, Orth.Only and MSE in Table 2), and we describe
them below. All these losses act on the feature vectors fv

and fa of the two modalities.
The first two are based on a cosine similarity metric, i.e.,

cos(θa,v) with θa,v the angle between fv and fa. Their
main difference is that CosSim imposes an alignment con-
straint by minimizing the term 1 − cos(θa,v), thus, forc-
ing the θa,v to be zero, while Orth.Only minimizes the item
cos(θa,v)

2, forcing the angle θa,v to be±90◦ (Figure 2) and
thus imposing an orthogonality constraint. Instead, the Eu-
clidean loss is defined in terms of the Mean Squared Error
(MSE) between fv and fa, thus resulting in the minimiza-
tion of both θa,v and the norm difference between the two
feature vectors (Figure 2).

We underline that our LRNA loss directly operates on
feature norms, without imposing any explicit constraint
on the angular distance θa,v between the two feature vec-
tors. This choice let the network free to choose to exploit
modality-specific characteristics, similarly to what happens
with Orth.Only, align them, as CosSim and MSE do, or take
different orientations.

3. Class re-balance

In Figure 3 (left) we report the mean feature norms for
each class, which has been calculated as a mean of the
norm of all samples in the class and mediated over all do-
mains. As it can be observed, the norm unbalance reflects
also at class level, with the audio modality’s norm still being

. . . . . .

Figure 2. RNA loss vs standard losses. Representation of visual
and audio features by means of segments of different lengths ar-
ranged in a radial pattern, and whose length represent their mean
feature norm. Similarity-based losses (Cosine Similarity loss and
Orthogonality loss) impose a constraint on the angle θ between the
two modality representations, while they do not re-balance feature
norms. On the other side, the MSE loss minimizes both the angle θ
between the two, and the discrepancy between their feature norms.
As opposed to this losses, RNA does not impose a constraint on
the angular distance θ.
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Figure 3. Mean feature norms for each class (left), and the corre-
sponding per-class accuracy (right).

greater then the visual one on average. When minimizing
RNA loss, norms are re-balanced not only among modal-
ities, but also across all classes. In Figure 3 (right), we
also show the improvement in terms of per-class accuracy of
RNA-Net w.r.t. the baseline DeepAll. In general, accuracy
improves across basically all classes. This is because the
RNA loss prevents the audio modality (higher norm) from
“dominating” the visual modality (lower norm), allowing
the network to accurately leverage knowledge from the vi-
sual stream in classifying actions.



COMPARISON WITH OTHER LOSSES

D1→ D2 D1→ D3 D2→ D1 D2→ D3 D3→ D1 D3→ D2 Mean D1, D2→ D3 D1, D3→ D2 D2, D3→ D1 Mean

CosSim 38.50 33.75 32.59 45.78 39.97 50.86 41.76 50.01 42.40 44.40 45.60
Orth. Only 39.18 37.55 36.86 47.09 43.70 51.61 42.67 53.08 41.76 48.07 47.64
MSE 43.88 44.18 40.28 49.89 43.27 51.60 45.52 40.80 46.59 50.93 46.11

RNA loss (Ours) 45.01 44.62 41.76 48.90 42.20 51.98 45.75 55.88 45.65 51.64 51.06

Table 2. Top-1 Accuracy (%) of RNA loss w.r.t. to other losses, namely the cosine similarity, an orthogonality loss, and MSE, on both
single- and multi-DG settings.

FUSION STRATEGIES

Supervised Single-DG Multi-DG DA

Baseline (mid-level fusion) 60.18 40.33 47.61 40.33
RNA-Net (mid-level fusion) 62.11 45.48 49.56 45.73

Baseline (late fusion) 59.76 40.93 44.67 40.93
RNA-Net (late fusion) 63.13 45.75 51.06 47.71

Table 3. Top-1 Accuracy (%) of RNA-Net with two different fu-
sion strategies, namely mid-level fusion and late fusion. Bold:
highest result for each setting.

4. Architectural Variations
Fusion Strategies. In Table 3 we compare the late fu-

sion approach against the so-called mid-level fusion, used
in [10]. It consists in feeding the prediction layer with the
fusion of the two modality features, i.e., concatenation. As
far as it concerns the mid-level fusion approach, it demon-
strates to be a valid alternative in both the intra-domain (Su-
pervised) and cross-domain scenarios, remarking the flex-
ibility of our method to be employed with different multi-
modal fusion strategies and in all the presented settings.

TBN Variation. To prove that the RNA loss could be
easily included in other networks, we report some results
obtained by integrating RNA loss in the original TBN [10]
network. Those are: D1,D2→D3: 52.69 (+3.8%), D1,D3→
D2: 46.16 (+3.5%) , D2,D3 → D1: 46.68 (-0.7%), avg:
48.51 (+2.2%). The improvement is reported w.r.t. to Deep
All results in the main paper.

5. EPIC-Kitchens-100 UDA Setting
The EPIC-Kitchens-100 dataset consists of first-person

videos of 16 participants in several kitchens and 97 verb
classes. The UDA setting provides as source the videos
recorded in 2018 (EK-55) and as target data (unlabeled)
videos recorded 2 years later (2020). The temporal gap,
also referred to as temporal domain shift, is the difficulty
that the domain adaptation techniques have to face.

The multi-source nature of the proposed setting makes it
perfect to deal with the domain shift using DG techniques.
Moreover, we believe that a domain generalization algo-
rithm serves precisely to ensure the robustness of a model
over time, without having to resort to UDA-like approaches
that require the use of the (albeit unlabelled) target.

Authors of [4] proposed a multi-modal (RGB+A+OF)
version of Temporal Attentive Adversarial Adaptation
Network (TA3N) [2] as UDA baseline. The UDA tech-
nique proposed in [2] is based on three components. The
first one, called Temporal Adversarial Adaptation Network
(TA2N), consists in an extension of DANN [6], aiming to
align the temporal features on a multi-scale Temporal Rela-
tion Module (TRM) [20] through a gradient reversal layer
(GRL). The second component is based on a domain atten-
tion mechanism which guides the temporal alignment to-
wards features where the domain discrepancy is larger. Fi-
nally, the third component uses a minimum entropy regular-
ization (attentive entropy) to refine the classifier adaptation.

To ensure a fair comparison, we added optical flow into
our architecture (using the same features extractor that was
used in [4]) while still minimizing the RNA loss. As it can
be observed from Table 6 of the main paper, even without
employing the target, we outperform TA3N, confirming the
importance of DG in this context. We also demonstrated
that RNA-Net and TA3N approaches are complementary.

6. Implementation Details
This section details the adaptions applied to the im-

plementation of Squeeze-and-Excitation (Section 6.1) and
Non-Local (Section 6.2) to use them as gating mechanism
(following [18]), and the Transformer-based approaches
(Section 6.3). Finally, we provide additional details on how
we adapted other multi-modal and UDA approaches to our
framework.

6.1. Squeeze And Excitation (SE) Gate

The Squeeze-and-Excitation networks [7] introduce a
gating mechanism aimed at selectively adjusting each fea-
ture map’s weighting according to the task at hand. We
adapted this approach to our multi-modal network using
the input features from one stream to compute, using the
same recipe of [7], scaling weights for the features of the
other stream. Specifically, after performing a global aver-
age pooling on the features from the visual stream, we learn
weights as in [7], and use them to scale the features of the
audio stream. The same procedure is applied on audio fea-
tures to produce weights for the visual ones. The so ob-
tained scaled channels are then used to replace the existing



ones of the corresponding modality.
We found this mechanism to perform the best when

added after the third block of both the BNInception [8] and
Inflated Conv3D (I3D) [1] models.

6.2. Non-Local (NL) Gate

Non-Local Networks [19] proposed an attention-based
gating mechanism, which follows a Query-Key-Value for-
mulation. When gating from the visual stream to the au-
dio stream, the Query is calculated from the visual stream
features and Key and Value from the audio one (and vice
versa). Both implementations are shown in figure 5. Sim-
ilarly to the SE gate, we applied non-local gating after the
audio and visual models’ third block.

6.3. Transformer-based Approaches

In our work, we adopted the two following recent
transformer-based approaches proposed as a co-attention
mechanism to learn generic audio-visual representations:

• the Transformer Self-Attention [13], which leverages
a translation network that first combines a set of fea-
tures from k audio or visual clips (extracted before
the final global pooling) using Query-Key-Value Self-
Attention [17]; then, a second module computes a sim-
ple clip-wise feed-forward transformation (figure 6-a)
applied, in our implementation, to both audio (fa) and
visual (fv) features.

• the Cross-Modal Transformer Self-Attention [3],
which modifies the queries of each modality using
Self-Attention on the features of the other modality
(figure 6-b).

6.4. Other implementation details

We provide additional details on the implementation of
the multi-modal and UDA approaches illustrated in Table
1-2 of the main paper. Notice that, for a fair comparison,
we kept unaltered our backbone architectures in all of these
experiments, except for TBN [10], for which we maintained
the original backbone architecture.

• IBN-Net [15]: we combined Instance Normalization
[16] and Batch Normalization [9] layers as in [15];

• Gradient Blending [18]: we re-weighted the visual and
RGB losses, and their joint combination loss as in
[18], using the weights used in the original paper [18]
and provided in the EPIC-Kitchens Action Recogni-
tion challenge report for the verb category [5];

• UDA approaches: we adapted AdaBN [11] by updat-
ing separate batch normalize layers with source and
target statistics respectively. As far as GRL [6], we

added a gradient reversal layer on top of the features
extractor and trained a domain discriminator. Finally,
we integrated MMD loss in [12] on our framework.

7. RNA-Net architecture for UDA
Thanks to RNA loss’s unsupervised nature, we can ex-

tend RNA-Net to the Unsupervised Domain Adaptation
(UDA) setting, where unlabelled target data are available
during training. As shown in figure 4 this can be done by
simply redefining LRNA as the sum of Ls

RNA and Lt
RNA,

where each term computes a loss on different domains (i.e.,
respectively, source and target). The action classifiers Gv

and Ga are then trained with standard cross-entropy loss on
source data only and RNA-Net is trained by minimizing the
following total loss:

L = LC + λ(Ls
RNA + Lt

RNA), (2)

where λ indicates the weight given to our loss LRNA.

8. Additional Qualitative Results
To conclude these supplementary, we present some addi-

tional qualitative results based on the Class Activation Maps
obtained by training the network with and without the addi-
tional RNA loss. The images in Figure 7 clearly show that,
by rebalancing the modalities norms, the network improves
its ability to correctly identify the image regions that cor-
relate best with the represented action. This effect is due
to the fact that when it unifies the norms, the network also
tends to “choose” which features to favour (i.e., those that
are more general) and, consequently, to reduce those that it
considers irrelevant, i.e., those more domain-specific (such
as the background) that negatively influence generalization.
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