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Appendix

0.1 Training
For overall hybrid model training, we optimize the loss function used for YOLOv3
training.
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BCE(ŷk, σ(sk))]

+λnoobj

S2∑
i=0

B∑
j=0

1noobji,j [−log(1 − σ(to))] (1)

As described in Equation (1), the loss function optimizes the sum of squared errors
on the predicted bounding box dimensions, x/y coordinate and width/height transforms,
as well as applying a binary cross-entropy loss to class probabilities. Loss is only
calculated for objects appearing in the ith cell, referring to the 8x8 regions in the output
prediction volume, and with the corresponding jth bounding box predictor, indicated
by 1obji,j , where the jth bounding box predictor is the bounding box with the highest IoU
calculated with respect to the ground-truth bounding box in cell i. Harshly penalizing
the confidence scores of bounding boxes containing no ground-truth objects can lead to
training instability, which motivates the inclusion of the parameters λcoord and λnoobj .
For these parameters, we use the values of λcoord = 5 and λnoobj = 0.5 as presented
in the original YOLO work. Due to the small size of targets in our context, we omit
the multiple scales at which the original YOLOv3 architecture detects bounding boxes,
instead opting to predict bounding boxes at only the smallest scale. In addition, we also
perform unsupervised pretraining of each point-cloud model (PointNet, PointNet++,
and PointConv), where a series of deconvolutional layers are used to reconstruct the
initial point-cloud and trained using a mean squared error loss across the reconstructed
point features. The hybrid framework training, and point-cloud model pretraining, was
performed on SatSim with event-based simulator generated datasets with a range of
sensor parameter and scene conditions. Two data sets were generated with the first
having a narrower range of parameters closely matching the real conditions expected
and the second having a larger range of parameters expected to be far more difficult for
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detection. The full list of sensor parameters and scene conditions for the two purely
simulated datasets can be found in Table 1.

Parameter Dataset 1 Dataset 2

FoV 0.08 U(0.05,1.0)
Zero Point 21 21

Exposure Time 1.0 U(0.5,2.0)
Background MV U(18,24) U(12,20)

Objects per Image U(3,9) U(3,9)
Object MV U(10,16) U(10,16)

Object Velocity U(-10,10) U(-10,10)

Table 1: Relevant SatSim Parameters for Dataset Creation. U(x, y) indicates sampling
from a uniform distribution with range [x,y] inclusive. Velocity values are sampled
separately for x and y axes with sign indicating corresponding directional movement.

0.2 Contrast Threshold Optimization
Table 2 lists the range of simulation parameters used to optimize contrast threshold in
simulation.

Parameter Value Range Step

FoV [0.05, 1.55] 0.3
Exposure Time [0.1, 1.1] 0.25

Background MV [11, 25] 1
Contrast Threshold [0.05, 5.0] 0.05

Table 2: Range of Parameter Sweep Values

Figures 1 and 2 detail the results of analysis referenced in Section 4.1 of the main
text. Figure 1 displays the mean and standard deviation of EB-SNR (event-based sig-
nal to noise ratio) with respect to the corresponding parameter values. As mentioned in
section 4.1, event-based samples were generated with each combination of the param-
eters shown in Table 2, with a polynomial regression fit to the contrast thresholds that
maximized EB-SNR in each scenario. While background magnitude and temporal win-
dow length show interesting trends across the tested values, both parameters vary over
a much smaller range of EB-SNR as compared to field-of-view (FoV). Furthermore,
the variance seen in EB-SNR versus FoV is also significantly smaller, suggesting that
it may be easier to mitigate the negative effects of increasing field-of-view by tuning
the contrast threshold.

Equation 2 shows the final 2nd polynomial fit used to extrapolate optimal contrast
thresholds from simulator parameters,
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Figure 1: Mean observed EB-SNR values versus each parameter of interest in contrast
threshold optimization.

Figure 2: Regression fit for optimal contrast threshold compared to empirical values.
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Θ = 4.16 + −0.55 ∗ x + −2.54 ∗ y + −5.94e− 06 ∗ z+

0.02 ∗ x2 + 0.07 ∗ x ∗ y+

4.14e− 07 ∗ x ∗ z + 0.77 ∗ y2+

5.76e− 07 ∗ y ∗ z + −1.73e− 11 ∗ z2 (2)

where x is the background magnitude in MV, y is the field-of-view in degrees, and
z is the overall exposure time in seconds. For our data generation process, we use a
symmetric contrast threshold, i.e. the threshold for positive and negative event gener-
ation are equal and opposite, such that Θ− = −Θ+. The regression fit calculated in 2
resulted in an RMSE of 0.61 with respect to the empirical optimal contrast thresholds.

Figure 2 shows the optimal contrast threshold values both empirically determined
and from the resulting polynomial regression. Although the resulting error (RMSE
of 0.61) does diverge from the empirically determined optimal thresholds, the ran-
dom variation in sample production may make a less certain optimal threshold more
desirable when taken over the entirety of a generated data set.
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0.3 Simulation-to-Real Data Generation
The provided real dataset used for sim-to-real gap analysis and model validation con-
sisted of 640x480 sized samples taken all with 0.8°field-of-view and 20 second expo-
sure times, but with unknown contrast thresholds, background magnitudes, and target
magnitudes. As shown in Figure 3, the number of events generated by identified stars
in samples was counted and fit with the corresponding star magnitudes obtained from
the Hipparcos star catalog. While satellite magnitude was estimated by simply using
the resulting polynomial fit shown in Figure 3, background magnitude was extrapolated
by averaging the estimated magnitude obtained from events counted in several 10x10
pixel patches across the image space. Finally, the contrast threshold used to generate
equivalent simulated samples was determined using the optimized threshold resulting
from Equation 2. The significant variation in event counts and the unknown contrast
threshold used for collection contributes heavily to the observed disparities in the event
streams generated, as stated in the main text, and no doubt also confounds analysis of
the simulation-to-real gap for our simulation pipeline.

Figure 3: Magnitude extrapolation using log event counts from real data collections
matched to known star catalog magnitudes

Figure 4 depicts the results of direct comparison between the real event streams
collected and the equivalent simulations. The attributes that most greatly impact object
detection results, namely number of events, ratio of positive to negative polarity events,
and the resulting EB-SNR, are compared within each plot. Each plot also indicates the
average value observed across real and simulated samples.
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Figure 4: Comparison between real and equivalent simulated event streams. Upper-
left: Ratio of positive to negative events per target; upper-right: total event stream
size per sample; lower-left: overall ratio of positive to negative events; lower-right:
EB-SNR per target

0.4 Additional Object Detection Results

Hybrid Architecture TP FP FN Precision Recall F ∗
1 Conf.

DarkNet Only 66169 22989 22827 0.742154 0.743505 0.742829 0.93196
DarkNet-PointNet 70089 23235 18907 0.751029 0.787552 0.768857 0.975000

DarkNet-PointNet++ 72425 24208 16571 0.749485 0.813801 0.78032 0.965000
DarkNet-PointConv 75580 32119 13416 0.701771 0.849252 0.768499 0.95999

Table 3: Performance comparison of hybrid frame and event stream architectures on
Dataset 1.

Tables 3 and 4 show the full evaluation results for each architecture combination
on the purely simulated datasets, while Tables 5 and 6 show recall over each of the
varied parameters of interest overlaid on the distribution of the parameter in the corre-
sponding data set. Note that FoV and temporal window length were both set to a static
value in Dataset 1, hence the single recall and frequency points present in those plots.
Referring to the parameters listed in Table 1, evaluations on dataset 1 show far superior
detection compared to dataset 2 due to the much narrower ranges of sensor parame-
ters/conditions, as expected. Conversely, the recall results on dataset 2 (displayed in
Table 6), though far worse, demonstrate the effects of varied conditions on detection
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Hybrid Architecture TP FP FN Precision Recall F ∗
1 Conf.

DarkNet Only 1531 2015 1985 0.431754 0.435438 0.433588 0.92469
DarkNet-PointNet 1720 2652 1796 0.393413 0.489192 0.436105 0.88998

DarkNet-PointNet++ 1581 2122 1935 0.426951 0.426951 0.438011 0.91500
DarkNet-PointConv 1616 2106 1900 0.434175 0.459613 0.446532 0.91998

Table 4: Performance comparison of hybrid frame and event stream architectures on
Dataset 2

performance. As mentioned in the main text, high background magnitude (i.e. smaller
MV values), low EB-SNR, and low target magnitude all contribute to reduced recall;
however, increasing FoV has the largest adverse effect on recall due to it significantly
increasing the number of noise events.

Backbone Arch. Background
Mag.

Target
Mag. Velocity EB-SNR Temporal

Window FoV

DarkNet Only

With PointNet

With PointNet++

With PointConv

Table 5: Recall at max F1 score versus sensor parameters and scene conditions for
Dataset 1 (only one value of temporal window length and FoV was used for this dataset)
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Backbone Arch. Background
Mag.

Target
Mag. Velocity EB-SNR Temporal

Window FoV

DarkNet Only

With PointNet

With PointNet++

With PointConv

Table 6: Recall at max F1 score versus sensor parameters and scene conditions for
Dataset 2
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