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1. Overview

In sections 2 and 3 we specify the loss functions used
for the reconstruction of images in the conducted experi-
ments as well as the applied metrics for evaluating the at-
tacks. Furthermore, the hyperparameters, positioning and
quantity of PRECODE modules are discussed in section 4.
Finally we provide the accuracy curves that describe the
models training progress (Fig. 1-3) and more exemplary
reconstruction results for the CIFAR-10, CFIAR-100 and
Medical MNIST datasets (Fig. 4-9).

2. Attack Loss Functions

The Client Privacy Leakage (CPL) attack [3] extends
the objective of minimizing the euclidean distance of the
dummy gradient and the observed gradient as in DLG/iDLG
by a label-based regularization term to stabilize the opti-
mization.

argmin
x′

||∇Lθ(F (x), y)−∇Lθ(F (x′), y)||2

+α||F (x′), y||2,
(1)

where α tunes the impact of the regularization term on the
optimization.

To perform the IGA attack described in [1] the dummy
image x′ is optimized for:

argmin
x′

1− ∇Lθ(F (x), y) · ∇Lθ(F (x′), y)

||∇Lθ(F (x), y)||||∇Lθ(F (x′), y)||
+αTV(x′).

(2)

The total variation of the reconstructed image TV(x′) is
added as a simple image prior, where α determines its
weight during optimization. The output labels y can be eas-
ily determined from the gradients as discussed before [4].

3. Metrics
In our experiments MSE measures the pixelwise squared

error as:

MSE(x, x′) =
1

np

np∑
i=1

(xi − x′
i)

2, (3)

where np is the number of pixels in the images x and
x′. Lower MSE values indicate a higher image similarity.
PSNR, which is commonly used to assess lossy compres-
sion schemes in video and imaging, is defined as:

PSNR(x, x′) = 10 log10

(
max(x)2

MSE(x, x′)

)
(4)

The higher the PSNR value the better the better the recon-
struction. SSIM uses a perception based model to measure
the structural similarity between two images [2]:

SSIM(x, x′) =
(2µxµx′ + c1)(2σxx′ + c2)

(µ2
x + µ2

x′ + c1)(σ2
x + σ2

x′ + c2)
, (5)

where µx, σx and µx′ , σx′ are the mean and variance values
for x and x′ respectively. σxx′ denotes the covariance of
x and x′, c1 = (k1L)

2 and c2 = (k2L)
2. k1 = 0.01 and

k2 = 0.03 are set by default and L is the dynamic range
of pixel values. SSIM values closer to 1 indicate a higher
similarity between images.

4. PRECODE VB Hyperparameters and Posi-
tioning

We investigated the influence of the VB hyperparameters
k ∈ [64, 128, 256, 512] and β ∈ [10−1, 10−2, 10−3, 10−4]
as well as the position and quantity of PRECODE modules
in the model on the training process and quality of recon-
structions.

If multiple bottlenecks are added to the model, the loss
function is adjusted accordingly:

L(ŷ, y) = LF (ŷ, y) +

n∑
i=0

LPi
, (6)



where

LPi
= βiDKL(N (µBi

, σBi
),N (0, 1)), (7)

and βi tunes the weight of the ith PRECODE module Pi

with bottleneck layer Bi on the overall loss function.
We found that the choice of k had no notable impact on

the training process, the final model performance and the
quality of reconstructions. If the choice for β was too high
(i.e. β = 10−1), the time for convergence increased and
model performance decreased. For the other β values there
was no further impact observed. Again we found no no-
table impact on the quality of reconstructions. We placed
PRECODE after four different feature extracting layers in
a MLP with four hidden layers and found that a placement
too close to the input resulted in a slightly increased qual-
ity of image reconstructions. Nevertheless the content of
the training data was still unrecognizable and model per-
formance was not impacted. Placing more than one PRE-
CODE module into the network resulted in a decrease of
model performance but did not impact the quality of recon-
structions.
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Figure 1: Test accuracy on the CIFAR-10 dataset. Line col-
ors define the baseline model and defense mechanisms.
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Figure 2: Train accuracy (a) and test accuracy (b) on the
CIFAR-100 dataset. Line colors define the baseline model
and defense mechanisms.
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Figure 3: Train accuracy (a) and test accuracy (b) on the
Medical MNIST dataset. Line colors define the baseline
model and defense mechanisms.
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Figure 4: Exemplary reconstruction results for all 10 classes of the CIFAR-10 dataset for the baseline DMLP and LeNet
models and different defense mechanisms.
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Figure 5: Exemplary reconstruction results for classes 1-25
of the CIFAR-100 dataset for the baseline DMLP and LeNet
models and different defense mechanisms.
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Figure 6: Exemplary reconstruction results for classes 26-
50 of the CIFAR-100 dataset for the baseline DMLP and
LeNet models and different defense mechanisms.
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Figure 7: Exemplary reconstruction results for classes 51-
75 of the CIFAR-100 dataset for the baseline DMLP and
LeNet models and different defense mechanisms.
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Figure 8: Exemplary reconstruction results for classes 76-
100 of the CIFAR-100 dataset for the baseline DMLP and
LeNet models and different defense mechanisms.
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Figure 9: Exemplary reconstruction results for all 6 classes of the Medical MNIST dataset for the baseline DMLP and LeNet
models and different defense mechanisms.
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