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1. Overview

In sections [2] and [3] we specify the loss functions used
for the reconstruction of images in the conducted experi-
ments as well as the applied metrics for evaluating the at-
tacks. Furthermore, the hyperparameters, positioning and
quantity of PRECODE modules are discussed in section
Finally we provide the accuracy curves that describe the
models training progress (Fig. [I}3) and more exemplary
reconstruction results for the CIFAR-10, CFIAR-100 and
Medical MNIST datasets (Fig. @}9).

2. Attack Loss Functions

The Client Privacy Leakage (CPL) attack [3] extends
the objective of minimizing the euclidean distance of the
dummy gradient and the observed gradient as in DLG/iDLG
by a label-based regularization term to stabilize the opti-
mization.
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where « tunes the impact of the regularization term on the
optimization.

To perform the IGA attack described in [1]] the dummy
image z’ is optimized for:
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The total variation of the reconstructed image TV (') is
added as a simple image prior, where o determines its
weight during optimization. The output labels y can be eas-
ily determined from the gradients as discussed before [4].

3. Metrics

In our experiments MSE measures the pixelwise squared
error as:
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where n,, is the number of pixels in the images = and
2’. Lower MSE values indicate a higher image similarity.
PSNR, which is commonly used to assess lossy compres-
sion schemes in video and imaging, is defined as:
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The higher the PSNR value the better the better the recon-
struction. SSIM uses a perception based model to measure
the structural similarity between two images [2]]:
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where ., 0, and p,/, o,/ are the mean and variance values
for x and 2’ respectively. o, denotes the covariance of
rand 2/, ¢; = (k1L)? and co = (k2L)?. k; = 0.01 and
ko = 0.03 are set by default and L is the dynamic range
of pixel values. SSIM values closer to 1 indicate a higher
similarity between images.

4. PRECODE VB Hyperparameters and Posi-
tioning

We investigated the influence of the VB hyperparameters
k € [64,128,256,512] and 3 € [107%,1072,1073,107%]
as well as the position and quantity of PRECODE modules
in the model on the training process and quality of recon-
structions.

If multiple bottlenecks are added to the model, the loss
function is adjusted accordingly:
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and 3; tunes the weight of the ith PRECODE module P;
with bottleneck layer B; on the overall loss function.

We found that the choice of k£ had no notable impact on
the training process, the final model performance and the
quality of reconstructions. If the choice for 8 was too high
(i.e. = 1071), the time for convergence increased and
model performance decreased. For the other 3 values there
was no further impact observed. Again we found no no-
table impact on the quality of reconstructions. We placed
PRECODE after four different feature extracting layers in
a MLP with four hidden layers and found that a placement
too close to the input resulted in a slightly increased qual-
ity of image reconstructions. Nevertheless the content of
the training data was still unrecognizable and model per-
formance was not impacted. Placing more than one PRE-
CODE module into the network resulted in a decrease of
model performance but did not impact the quality of recon-
structions.
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Figure 1: Test accuracy on the CIFAR-10 dataset. Line col-
ors define the baseline model and defense mechanisms.
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Figure 2: Train accuracy (a) and test accuracy (b) on the
CIFAR-100 dataset. Line colors define the baseline model

and defense mechanisms.
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Figure 3: Train accuracy (a) and test accuracy (b) on the

Medical MNIST dataset.

Line colors define the baseline
model and defense mechanisms.



DMLP LeNet
Original Baseline NG-3 NG-2 GC10 NG-2

Figure 4: Exemplary reconstruction results for all 10 classes of the CIFAR-10 dataset for the baseline DMLP and LeNet
models and different defense mechanisms.



DMLP LeNet DMLP LeNet
Ours Original Baseline NG-3  NG-2 Ours Baseline NG-3  NG-2 Ours

Original Baseline NG-3  NG-2 Ours Baseline NG-3

NG-2

B s

L

L B G R ESR B

4 EDIRM - il
el LM

i & ECTEM » FTi

0

ol
vl
-l

-
-
4

Ay

Ly

=
1@y
i .:;.
-
V.;'\
| -
.

ERIES 43T

E BN

2

Figure 5: Exemplary reconstruction results for classes 1-25 Figure 6: Exemplary reconstruction results for classes 26-
of the CIFAR-100 dataset for the baseline DMLP and LeNet 50 of the CIFAR-100 dataset for the baseline DMLP and
models and different defense mechanisms. LeNet models and different defense mechanisms.
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Figure 7: Exemplary reconstruction results for classes 51- Figure 8: Exemplary reconstruction results for classes 76-
75 of the CIFAR-100 dataset for the baseline DMLP and 100 of the CIFAR-100 dataset for the baseline DMLP and
LeNet models and different defense mechanisms. LeNet models and different defense mechanisms.
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Figure 9: Exemplary reconstruction results for all 6 classes of the Medical MNIST dataset for the baseline DMLP and LeNet
models and different defense mechanisms.
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