
– Supplementary Material –
Less Can Be More: Sound Source Localization With a Classification Model

Here, we present additional details pertaining to the ex-
periments that could not be included in the main text due to
space constraints. All figures and references in this supple-
mentary file are self-contained.

The contents included in this supplementary material are
as follows: 1) The network architecture, 2) Video classi-
fication accuracy of our model on VGGSound dataset, 3)
Difference between our pseudo bounding boxes and visual
object detectors 4) Additional discussion and qualitative re-
sults for selected informative moments vs. mid-frames 5)
Details for the modified version of [4] that is used in Sec-
tion 5 of the main paper.

1. Architecture
In Table 1, we provide the architecture of the back-

bone networks. We use a two-stream network architec-
ture that contains video and audio network, as in exist-
ing audio-visual learning works. The video network is a
spatio-temporal ResNet mixed convolution network, simi-
lar to MCx [6], borrowed from official PyTorch implemen-
tation1. Audio network is a network that contains 2D convo-
lution layers, similar to [1]. Batch Normalization and ReLU
activation function are used after every convolution layer.

2. Video Classification Results
The proposed model is trained with the objective of

video classification. Here, we show experimental results for
predicting video-level labels with our proposed model and
the other model settings, presented in the ablative study. Ta-
ble 3 shows the video classification accuracies. As results
indicate, the proposed model gives the highest classification
performance which is aligned with the findings of [6] and
the trend of sound localization results in “Ablative Study”
of the main paper.

3. Automatic Bounding Box Generation for
Sounding Objects

In Section 5.2 of the main paper, we show that our pro-
posed model has an ability to automatically generate accu-

1https://pytorch.org/vision/0.8/models.html#torchvision.models.video.mc3 18

Layer # filters K S P Output

input 1 - - - 10 × 100 × 80
conv1 64 (1,3,3) (1,2,1) (0,1,1) 10 × 50 × 80
conv2 64 (1,3,3) (1,1,2) (0,1,1) 10 × 50 × 40
maxpool2 - (1,1,3) (1,1,2) (0,0,0) 10 × 50 × 19
conv3 192 (1,3,3) (1,1,1) (0,1,1) 10 × 50 × 19
maxpool3 - (1,3,3) (1,2,2) (0,0,0) 10 × 24 × 9
conv4 256 (1,3,3) (1,1,1) (0,1,1) 10 × 24 × 9
conv5 256 (1,3,3) (1,1,1) (0,1,1) 10 × 24 × 9
conv6 256 (1,3,3) (1,1,1) (0,1,1) 10 × 24 × 9
maxpool6 - (1,3,2) (1,2,2) (0,0,0) 10 × 11 × 4
conv7 512 (1,4,4) (1,1,1) (0,1,0) 10 × 10 × 1
fc8 512 (1,1,1) (1,1,1) (0,0,0) 100 × 1
fc9 512 (1,1,1) (1,1,1) (0,0,0) 100 × 1

(a) Audio Network

Layer # filters K S P Output

input 3 - - - 100 × 112 × 112
conv1 64 (3,7,7) (1,2,2) (1,3,3) 100 × 56 × 56
conv2 64 (3,3,3) (1,1,1) (1,1,1) 100 × 56 × 56
conv3 64 (3,3,3) (1,1,1) (1,1,1) 100 × 56 × 56
conv4 64 (3,3,3) (1,1,1) (1,1,1) 100 × 56 × 56
conv5 64 (3,3,3) (1,1,1) (1,1,1) 100 × 56 × 56
conv6 128 (1,3,3) (1,2,2) (0,1,1) 100 × 28 × 28
conv7 128 (1,3,3) (1,1,1) (0,1,1) 100 × 28 × 28
res-conv8 128 (1,1,1) (1,2,2) (0,0,0) 100 × 28 × 28
conv9 128 (1,3,3) (1,1,1) (0,1,1) 100 × 28 × 28
conv10 128 (1,3,3) (1,1,1) (0,1,1) 100 × 28 × 28
conv11 256 (1,3,3) (1,2,2) (0,1,1) 100 × 14 × 14
conv12 256 (1,3,3) (1,1,1) (0,1,1) 100 × 14 × 14
res-conv13 256 (1,1,1) (1,2,2) (0,0,0) 100 × 14 × 14
conv14 256 (1,3,3) (1,1,1) (0,1,1) 100 × 14 × 14
conv15 256 (1,3,3) (1,1,1) (0,1,1) 100 × 14 × 14
conv16 512 (1,3,3) (1,2,2) (0,1,1) 100 × 7 × 7
conv17 512 (1,3,3) (1,1,1) (0,1,1) 100 × 7 × 7
res-conv18 512 (1,1,1) (1,2,2) (0,0,0) 100 × 7 × 7
conv19 512 (1,3,3) (1,1,1) (0,1,1) 100 × 7 × 7
conv20 512 (1,3,3) (1,1,1) (0,1,1) 100 × 7 × 7
avgpool - (1,7,7) - (0,0,0) 100 × 1 × 1

(b) Video Network

Table 1: Architecture of the backbone networks. K, S,
P , res, maxpool and avgpool denote kernel size, stride,
padding, residual, max-pooling and average-pooling layers,
respectively.

rate pseudo bounding boxes for sounding objects. In this
section, we give a more detailed discussion.

First, even though our qualitative results show accurate
boxes for sounding objects in the scene, one can raise a
question about the difference between the usage of off-the-
shelf visual detectors and our results. To show the effec-



Figure 1: Qualitative Results of Automatic Bounding Box Generation and comparison with DETR [3]. Our method ac-
curately generates bounding boxes for sounding objects to be used in sub-tasks whereas off-the-shelf visual detector DETR [3]
can not propose proper boxes.

Figure 2: Qualitative Results of Automatic Bounding Box Generation. Our method accurately generates bounding boxes
for sounding objects to use in sub-tasks, such as faster human annotation and semi-supervised sound localization.

Method AV-head A-head V-head

Single Multi-Modal 57.1 – –
Shared FC 57.6 45.6 39.1
Individual FCs 58.1 45.9 39.2

Table 3: Video classification performance on VGGSound
dataset. We investigate the effects of architectural choices
in the proposed method. AV-head, A-head, and V-head indi-
cate audio-visual head, audio-head, and visual-head respec-
tively.

tiveness of our results, we make a comparison with a recent
visual detector [3]. Figure 1 shows this comparison. As it
can be seen in “welding” example (first column of the first
row in Figure 1), visual detector (DETR) has no ability to
indicate that sounding location in the scene is the welding
light. Also, “volleyball” example shows that our network
outputs a box around the volleyball field including people.
However, the visual detector only focuses on humans indi-
vidually. Additionally, we can see that visual detector can

not propose any bounding box for some examples. The sec-
ond row of the Figure 1 shows that DETR misses some loca-
tions or objects in the scene while our proposed method can
give accurate pseudo boxes for possible sound locations.

Lastly, our method generates accurate bounding boxes
not only for the samples that contain a single object with
a relatively simple background but also in complex scenes.
As it can be seen in the last column of the first row in Fig-
ure 2, our network proposes a bounding box around the dog
even though there are furniture and TV in the scene. More
qualitative results for the ability of our method are presented
in Figure 2.

4. Additional Results of the Informative Mo-
ment Selection

As shown in the main paper, the sound localization task
performance gets higher with the properly selected mo-
ments. To justify our idea, we visualize more samples that
have a big difference between the mid-frame and the se-
lected moment. Largely we can categorize the samples as
audio-wise and visual-wise wrong samples. We visualize
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Figure 3: Audio-wise comparison of mid-frame and our informative moment selection strategies. The red dashed
lines are the mid-frame moments, and the blue depicts our selected moments. The black dashed boxes contain the proper
information in the audio modality. Mid-frame selection has drawbacks as picking a non-informative part of the audio signal
whereas our proposed strategy gives more useful inputs for sound localization training. For example; “fire truck siren” and
“elk bugling” examples show that our proposed strategy selects the moment that has an informative audio signal.

the spectrogram for audio-wise wrong samples along with
the corresponding visual frames (Figure 3). The sound of
the beast howling or crowing can be considered as an in-
stant/sudden event. Similarly, fireworks or explosions show
a visually meaningful moment within a short duration. (Fig-
ure 4). Some sub-sequences of videos lose audio-visual cor-
respondence due to the manipulation of the videos such as
clipping, concatenation, narration or mute. Some parts of

videos contain visually noisy contents due to camera works
such as defocusing or fading in and out. Because of the rea-
sons mentioned above, selecting a mid-frame as a training
sample for audio-visual tasks lower the chance to correlate
the audio and the corresponding visual signal. In order to
prevent the model learn from wrong correspondences, mo-
ment selection is important.



Race carPlaying hammond organ Lions roaring
Selected Selected SelectedMid frame Mid frame Mid frame

Playing saxophonePeople eating noodle Ocean burbling
Selected Selected SelectedMid frame Mid frame Mid frame

Race carFireworks banging Subway
Selected Selected SelectedMid frame Mid frame Mid frame

Figure 4: Vision-wise comparison of mid-frame and our informative moment selection strategies. Because of scene
changes or object occlusion or sudden/instant events, the mid-frame strategy can pick non-informative visual frames. How-
ever, our proposed method can select audio-visually correlated informative visual frames.

5. Details of Modified Sound Localization
Model

As it is mentioned in the main paper, we use the modi-
fied version of the publicly available sound localization net-
work [4]. In [4], VGG-16 [5] is used for the vision embed-
dding and SoundNet [2] is used for the audio embedding.
As the backbone networks used in [4] are outdated, we re-
place them with ResNet-18 models. Following that back-
bone networks in [4] use pre-trained models for both vision
and audio embedding, we also use ImageNet pre-trained
ResNet-18 for the vision backbone. Since there is no avail-
able pre-trained audio network (ResNet-18) trained on VG-
GSound, we train our audio backbone network from scratch
by following the training scheme of SoundNet, which learns
the audio representation by knowledge distillation from the
pre-trained vision network. The rest of the architecture and
the training settings of [4] are identically followed.
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