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1. Supplementary
In this supplementary material, we provide:
• Additional implementation details for the approach.
• Additional details on modality fusion.
• Other variants for Joint-Contrastive loss.
• Analyses and experiments on data augmentations.
• Experiments on clip selection.

2. Additional Implementation Details
We use Adam with a learning rate of 1E-4 for JHMDB

and HMDB and 5E-4 for Charades. The learning rate is re-
duced by 0.1 times after the validation loss plateaus. Use
of dropout after convolutional layers, as employed in [1]
was beneficial for the Charades dataset. None of our ex-
periments use the background joint in an attempt to force
the network to extract richer per-joint motion information.
Following [1], we additionally use flip augmentation for all
experiments. Experiments on HMDB and Charades use a
batch size of 128 while experiments on the much smaller
JHMDB used a batch size of 16. Further, for JHMDB we
activate the contrastive loss after 50 epochs. The dataset
specific hyper-parameters that we used are:

J-HMDB:
• cdim : 128
• λ: 0.05
• Epochs : 100
• Training and evaluation on heatmaps of size 64× 86
• β = 6, γ = 3
• τ = 0.3
HMDB:
• cdim : 64
• λ: 0.5
• Epochs : 200
• Training on random crop of size 64×86 and evaluation

on center crop of size 64× 86
• β = 4, γ = 0
• τ = 0.1

Charades:
• cdim : 32
• λ: 0.5
• Epochs : 150
• Training on random crop of size 64×64 and evaluation

on center crop of size 64× 64
• β = 8, γ = 4
• τ = 0.05

Experiments on the Mimetics dataset For experiments
on Mimetics, we first train a model on Kinetics50 dataset
which has the 50 classes common with Mimetics. Then,
we evaluate this model on the Mimetics dataset. We used a
batch size of 16, cdim = 256 and trained the model for 100
epochs,. We used Dropout with this model. SGD with mo-
mentum was used for training this model with lr of 0.01,
momentum of 0.9. We found λ = 0 to work well for
this dataset. In addition, we found the use of Gumbel-Max
trick [6, 3] in the weight-selector to be beneficial. Patience
of 2 was used for the scheduler. β, γ = (3, 0) was used
to train the model. We generate heatmaps by parsing the
dataset provided by [8] and adding Gaussian blobs around
the keypoints. Our model gave 44.4% on Kinetics50 vali-
dation set.
Experiments on AVA dataset Since AVA is annotated with
multi-person multi-label actions, the bounding box infor-
mation is used to crop per-person pose information across
the clip. These are then used to obtain the pose encoding.
For a fair comparison, we used the bounding boxes provided
by SlowFast [2]. To account for multi-person context infor-
mation, we also append the pose encoding of other people
in the clip as a separate channel. We use a batch size of 64
and train the model with a learning rate of 5E-4. We used
β, γ = (3, 0). Hyperparameters for joint-contrastive loss
were set to τ, λ = 0.1, 0.5.
Additional baseline details Since an official implementa-
tion of [1] is not publicly available, we reproduce the results
using our own implementation. As mentioned in the main
paper, we make use of the same aggregation function for a



Figure 1: Channel-time encoding o[t] used to encode the
pose heatmaps. We use the same o[t] as [1] with three chan-
nels. This example is for a video of sixty frames.

fair comparison. For completeness, we include the aggre-
gation function used in Fig. 1.
Normalization: Normalization is essential before using a
representation as an input to a neural network. The max-
over-channel strategy chosen in [1] normalizes the input to
lie between 0 and 1. We posit that it is also important to
encode the time spent by each joint at a location. The max-
over-channel strategy assigns 1.0 as the maximum value in a
channel irrespective of the actual duration that a joint spent
at a particular spatial location which renders different rep-
resentations incomparable. To solve this, we normalize by
dividing the aggregated representation pj by the maximum
possible value that a joint can accumulate at that location.
Note that, in [1] the authors mention that they tried this ap-
proach, but this did not improve their performance. How-
ever, we obtain considerable improvement upon using this
normalization perhaps due to better modeling.
Architecture Details Table 1 shows the architecture of
our motion extractor module which is shared among all
joints to give rj . An additional 1 × 1 convolution is used
to generate cj . Table 2 shows the architecture of our
joint selector module which generates wj using rj . The
representation cj is weighed using the weights wj and
passed to the classification module (Table 3) to generate the
final classification scores. ReLU activation is used after all
layers except for the last layer of joint selector which uses
sigmoid. The projection layers used with contrastive loss
are implemented as two MLP layers which take spatially
pooled per-joint features. The output from the MLP is
normalized to lie on a unit hypersphere.

3. Modality Fusion
Implementation Details As discussed in the main paper,
we propose to use a very simple learnt fusion scheme to
combine the different modalities. For single label classifi-
cation tasks, we learn a single scalar weighing parameter for
each of the M modalities to be fused and for a multi-label
task (like Charades) with C classes, we learn M × C pa-
rameters. We first use the pretrained RGB+Flow and pose

Table 1: Architecture details of the Motion Extractor. This
module extracts motion information from each joint sep-
arately. In our proposed approach JMRN, parameters of
this module are shared amongst all joints except the initial
BatchNorm layer.

Layer Kernel/Stride Output of Layer

BatchNorm - 3× 64× 86
Convolution 3/2 128× 32× 43
Convolution 3/1 128× 32× 43
Convolution 3/2 256× 16× 22
Convolution 3/1 256× 16× 22

Table 2: Architecture of the joint-selector module. This
module uses the motion representation from all joints to
reweight the joints most useful for the task.

Layer Kernel/Stride Output Size

Convolution 1/1 256× 16× 22
Average Pool - 256× 1× 1

FC 3/1 J

Table 3: Architecture of the classification module. The
reweighed joints are the input to the module. This module
performs the final classification.

Layer Kernel/Stride Output Size

Convolution 1/1 512× 16× 22
Convolution 3/2 512× 8× 11
BatchNorm - 512× 8× 11
Convolution 3/1 512× 8× 11
BatchNorm - 512× 8× 11

Global Average Pool - 512
FC - C

models to extract per-modality logits for each clip. We then
learn the parameters using the train set. During inference,
the modalities are fused using the learnt logits. Specifically
for a single label classification task,

lcombined = αRGBlRGB + αflowlflow + αposelpose (1)

Where lRGB , lflow, lpose ∈ RC are logits extracted from
the pretrained network and αRGB , αflow, αpose are opti-
mized to minimize classification loss w.r.t lcombined. For
JHMDB and HMDB experiments, we L2 normalize the ex-
tracted logits. We train all models for 100 epochs. The
Adam optimizer was used for all experiments and we chose



learning rates of 1e-3, 1e-4, 5e-4 for JHMDB, HMDB, Cha-
rades respectively. Since we work with pre-extracted logits
and there are a very few parameters to learn, these exper-
iments can be performed very quickly and can be trained
on a CPU. While there are a lot of approaches proposed
for RGB and flow, we primarily choose models which have
a high performance and are publicly available. We expect
similar improvement over other models too.

In Figures 2, and 3 we visualize the improvements that
we obtain on per-class metrics when we perform fusion with
recent state-of-the-art methods. We see considerable im-
provements on classes where human motion plays a key
role and this improvement is also seen in the overall per-
formance. We believe that training schemes which involve
back-propagation through the pose and RGB/flow back-
bones like [4] will lead to further gains and can avoid the
drop that we see in a few classes during fusion. We leave
this to future work.

4. Other variants for Joint-Contrastive loss
Here we experiment with different variants of our joint-

contrastive loss. We first experiment with a variant that does
not use label information. Specifically, only the instance
and its augmented version are considered as positives. With
this approach every other instance in the batch is considered
as a negative for loss calculation. Note that this approach is
commonly used in the self-supervised learning setting. We
refer to this variant as only-aug. As discussed in the pa-
per, for multi-label problems we consider an instance as a
positive if it shares any label with the anchor. An alternative
approach is to weigh the positive examples by the number
of labels that they have in common. We call this variant
multi-label-weighted. We refer to the variant used
in the main paper as proposed. The results are shown
in Table 4. We see that the proposed variant uses the la-
bel information effectively during training and gives a better
performance compared to the other variants. But, the other
variants of joint-contrastive loss still outperform our model
trained without any joint-contrastive loss thus showing the
efficacy of the proposed approach.

5. Analyses and experiments on data augmen-
tation

Values of β and γ. In Fig. 4 we show the effect of β and
γ on the performance of our model on the three datasets. It
can be seen that almost all values of β, γ lead to improve-
ments over (0, 0) making it easier to use this method on
other datasets without an extensive hyper-parameter search.
Further, relatively small values of β, γ are enough to give
a considerable performance improvement. To evaluate the
contribution of augmentation scheme alone, we do not use
contrastive loss in these experiments.

Alternative Data Augmentation Technique. We experi-
mented with a few other data augmentation strategies. We
first use a technique that was inspired by CutMix [9]. In
the original paper, the authors generate new training exam-
ples by mixing patches from different images and changing
the ground-truth labels based on the area of patches and the
labels. We attempt to use this in our context. Specifically,
during training, P joints from a pose-representation are re-
placed with pose-representation from another video. The
ground truth labels are appropriately changed and the net-
work is trained with the modified ground truth. In our ex-
periments, this strategy performed considerably worse than
the proposed PAA.

We also experimented with a pose-aware rotation aug-
mentation. Specifically, we rotate the obtained represen-
tation about the center by a random amount. This can be
seen to be a rotation equivalent to the global translation jit-
ter in which the entire representation is moved by the same
amount. Similar to the groupwise translation, we experi-
ment with groupwise rotation too. We found the augmen-
tation to be helpful and it leads to improvements over the
baseline, though it performs slightly worse than transla-
tion based augmentation that was shown in the main paper.
Combining the two augmentation in novel ways could lead
to improved performance but we leave that to future work.
It is to be noted that, unlike [1], which tried to randomly
jitter each joint spatially, our approach of doing pose-aware
augmentation retains the structure and hence leads to im-
provements. As observed in [1], we do not see any gain
when we jitter or rotate each joint independently.
PAA with baseline Our data augmentation step is general
and can be applied to other models. To show this, we ex-
perimented with PAA applied to the baseline PoTion model.
The results are shown in Table 5. We see that the augmenta-
tion shows consistent improvement on the baseline but the
results are still worse than our proposed model. Further, a
joint-contrastive loss is not applicable to the baseline model
since it does not extract per-joint motion features.

6. Filtering Clips for Action recognition using
Pose Information

Pose guided clip selection In this section we explore appli-
cation of pose trajectories for clip selection. Human trajec-
tory information can contain significant information about
the underlying activity. We posit that pose information can
give crucial cues to select representative clips in a video.
The intuition behind this is that the pose trajectory encodes
the movement of all the joints along with redundancies and
time spent at each location. Properties of this trajectory, like
points of high or low curvature, time spent at a location, etc.,
can give cues to select clips that are discriminative for the
task of action recognition. We next describe our approach
for clip selection.



Figure 2: Per-class AP difference on Charades validation set when JMRN is combined with R101-NL-LFB[7]. We see that
most classes see an improvement in per-class AP scores justifying the claim that pose has complementary information.

Figure 3: Per-class AP difference on AVA v2.1 validation set when JMRN is combined with SlowFast-R101-NL[2].

Table 4: Experiments with variants of joint-contrastive loss. We experiment with three variants of the joint-contrastive loss
to train our model. We see that the proposed variant outperforms the alternatives. Further, we see that across all datasets
the use of any of the variants improves performance over model trained without the joint-contrastive loss. This shows the
effectiveness of the proposed loss in learning good representations.

Model Joint-Contrastive loss variant JHMDB-1 HMDB-1 Charades

JMRN None 69.81 52.02 15.33

JMRN only-aug 69.01 53.13 15.91
JMRN multi-label-weighted - - 15.97
JMRN proposed 71.08 54.05 16.2

We assume a trained clip classifier f that takes as in-
put clips ci ∈ R3×H×W×T for i ∈ 1, · · · , N from a video

with N clips and returns normalized logits zi that give the
probability of occurrence of each class. The baseline model



Figure 4: Effect of data augmentation hyperparameters β, γ. We visualize the improvement in accuracy compared to a model
which does not use the proposed data augmentation step. We observe that even small values of β, γ lead to a significant
improvement which shows the effectiveness of the approach. Further, we notice that the performance is not very sensitive to
the hyperparameter values and all values lead to an improvement.

Table 5: PAA with baseline. The proposed augmentation
step is not tied to JMRN but can give performance improve-
ments to other methods. The baseline shows consistent im-
provement when used with PAA. Our proposed model still
outperforms Baseline + PAA

Approach JHMDB-1 HMDB-1 Charades

PoTion 59.44 42.04 13.54

+ PAA 65.92 49.76 15.16

Ours 71.08 54.05 16.2

densely goes over each clip and uses a consensus function
g(z1, · · · , zN ) to give a single class-wise score for each
video. Typically, max or avg is used as the consensus func-
tion.

Inspired by [5], we generate ‘oracle’ scores using the
training data and the pre-trained clip classifier and then train
a model to mimic the ‘oracle’. For clip selection exper-
iments, we train using pose-representation extracted from
clips of sixteen frames. Oracle for the trained clip classifier
is first obtained using Oi = argtopK (fyi

(cj)) which se-
lects the K clips that give the highest confidence about the
correct class. These Oracle clips are then used to generate
ground truth labels: label[i, j] = 1 if cj ∈ Oi and 0 other-
wise. Thus instead of selection being guided by RGB data,
we use features extracted from JMRN.

Next, we train a saliency ranker which ranks two clips
during training time. In each batch, we sample an equal
number of Oracle and non-oracle clips. During inference,
we rank the clips according to the saliency given by the
model for all clips in the video and select the topK.

In Table 6 we show the results of clip selection using our
approach on average of 3 splits on HMDB dataset. Using
JMRN to extract pose features helps select salient clips and
gives improvements over all baselines. We also show the

Table 6: Clip selection comparison average of 3 splits on
HMDB. Our model outperforms the dense clip selector
baseline by 0.7% while utilizing only 60% of clips.

Method Clips used Accuracy(%)

Dense 24 75.64
Random 14 74.72
Uniform 14 75.11
Empirical 14 74.96
JMRN + PAA + TAN 14 76.34

middle frames corresponding to the 5 most salient clips in
Fig. 5. The selected clips are plausible for the activity of
‘turn’ and ‘swing baseball’ respectively.
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