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This appendix provides more details of our work. Here, we have the following sections: 1: Detailed baseline architectures,
2: More qualitative results, 3: Incorporating light blocks in other modules, 4: Implementation details, and 5: Analyzing the
complexity.

1. Detailed baseline architectures
The detailed architectures of the 2D and 3D baseline models are displayed in Fig. 1. The numbers in the blocks indicate

the output size of each particular layer/module. The feature extraction step is the same for the two models. The architecture
of hourglass and its intraconnections are also similar, except that in the 2D baseline, the convolutions are all in 2D type, while
there are 3D convolutions in hourglass of the 3D baseline. These two models differ in the cost volume construction and the
channel reduction module as well.

Figure 1: Top: 2D baseline, Bottom: 3D baseline. The numbers in the blocks indicate the output size of each particular
layer/module.
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2. More qualitative results
Figure 2 depicts more qualitative results on SceneFlow dataset. We have also shown qualitative comparison on KITTI

2015 validation set in Fig. 3.

Left image/Disparity 2D-MobileStereoNet 3D-MobileStereoNet
Figure 2: Qualitative performance on SceneFlow: Every two rows correspond to a test sample. In the left-most column, the
samples and the ground-truth disparity maps are illustrated. The following two columns show the disparity and error maps
(embedded with error values) estimated by 2D-MobileStereoNet and 3D-MobileStereoNet. Warmer colors in error maps
denote higher errors.
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Figure 3: Qualitative performance on KITTI 2015 validation set: From top to bottom, the left image, the ground-truth
disparity map and the estimated disparity maps by PSMNet [1], GA-Net-11 [3], GA-Net-deep [3], GwcNet-g [2], 2D-
MobileStereoNet and 3D-MobileStereoNet are illustrated. For a fair comparison, we trained all the models with a 159/40
split of KITTI 2015 training test. Warmer colors in error maps denote higher errors.

From Fig. 3, once again, we can verify that 2D-MobileStereoNet shows close performance to 3D models with the least
number of operations. Also, 3D-MobileStereoNet obtains competitive or better accuracy with the least number of parameters
among other methods.

3. Incorporating light blocks in other modules

As mentioned in the paper, in order to further reduce the complexity, the first convolutions in the feature extraction and
the pre-hourglass convolutions (cf. Fig. 1) are replaced with MobileNet-V2 (v2). The experimental results are reported in



Tables 1 and 2. Note that the first convolutions are of the 2D type for both 2D and 3D baselines; however, the pre-hourglass
comes in 2D or 3D convolutions depending on the baseline. We can observe that in 2D-MobileStereoNet, when the two
modules are replaced with MobileNet-V2 (v2), the network obtains the least EPE. In 3D-MobileStereoNet, this combination
yields slightly higher EPE. However, due to the nice reduction in the computation cost, we consider the same design choice
for the 3D network. It is noteworthy that we have examined MobileNet-V1 (v1) for these modules as well. However, as it
deteriorates the performance, we ignore v1 for these modules, albeit it shows much decrease in the cost.

first-conv2D pre-HG2D EPE(px) ↓ MACs(G) ↓ Params(M ) ↓
conv. conv. 1.50 30.33 1.21
conv. v2 1.41 30.0 1.16
v2 conv. 1.54 29.75 1.20
v2 v2 1.40 29.42 1.15

Table 1: Performance evaluation for the selected variant of 2D baseline (FE2D:v1, HG2D:v2) from Tab. 3a of the paper, when
replacing other components with v2 block (t = 2).

first-conv2D pre-HG3D EPE(px) ↓ MACs(G) ↓ Params(M ) ↓
conv. conv. 0.99 105.01 0.98
conv. v2 1.01 69.44 0.89
v2 conv. 0.99 104.44 0.97
v2 v2 1.01 68.86 0.88

Table 2: Performance evaluation for the selected variant of 3D baseline (FE2D:v1, HG3D:v2) from Tab. 3b of the paper, when
replacing other components with v2 block (t = 2).

4. Implementation details
We used PyTorch for implementation and conducting experiments. All the trainings are executed on 4 × NVIDIA GeForce

GTX 1080 Ti. We adapt the Adam optimizer with β1 = 0.9 and β2 = 0.999. On the SceneFlow dataset, the networks are
trained for 20 epochs, starting with a learning rate of 0.001. The learning rate is halved after epoch 10, 12, 14, and 16. The
best model is selected based on the least EPE value. In the experiments on the KITTI 2015 validation set, we finetune the
best SceneFlow model for 400 epochs, reducing the initial learning rate 0.001 by a factor of 10 after 200 epochs. To submit
the results to the KITTI 2015 benchmark, we finetune starting from a SceneFlow checkpoint showing the best generalization
performance from the SceneFlow to the KITTI 2015 images. For the 3D-MobileStereoNet, we used a batch size of 4, and for
2D-MobileStereoNet, the batch size is 8.

5. Analyzing the complexity
Table 3 shows the computation cost of the main modules, i.e. feature extraction and encoder-decoder, in baselines (with

standard convolutions) and in MobileStereoNets. Note that feature extraction is the same in 2D and 3D models. We see our
design choice for feature extraction is significantly reducing the complexity both in operation (from 52.07 to 7.84 GigaMACs)
and in parameters (from 7.84 to only 0.39 million). We also observe that the cost of the encoder-decoder modules, either in
2D or 3D, is reduced in lighter networks in both number of operations and parameters. Evidently, the major bottleneck for
the 3D models is the encoder-decoder with 3D convolutions.

Baselines MobileStereoNets
MACs(G) Params(M ) MACs(G) Params(M )

Feature Extraction 52.07 2.95 7.84 0.39
Encoder-decoder2D in 2D-MobileStereoNet 4.38 2.61 3.92 1.64
Encoder-decoder3D in 3D-MobileStereoNet 167.51 3.45 128.73 1.34

Table 3: Analyzing the computation cost in terms of MACs and number of parameters for the main modules.
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