
Appendices
Due to space limitations, some experiments had to be omit-
ted from the main paper. In this supplementary material, we
show more comprehensive experimental results and evalua-
tions.

Method Run1 Run2 Run3 Run4
EdgeHomoNet 7.28 4.36 4.14 4.18
HomoNet 2.89 2.85 2.55 2.51

Table 1: Performance comparison (Mean Average Corner
Error) of image-edge input network vs. image-image input
network. The errors for identity matrix is 98.6.

A. Comparison with single-modality network

In this experiment, we train a baseline single-modality
(image-to-image) homography network as [4]. Except for
changing the network input from [IA, EB ] to [IA, IB ], all
other factors are kept identical for the comparison. We re-
fer to this baseline as HomoNet, and the network in the
main paper as EdgeHomoNet. In both cases, the backbone
network is ResNet-50. Note, to avoid the effect of image
boundary during training, we apply a randomly generated
mask on IA before warping it to IB based on perturbed 4
points.

Table 1 shows the performance comparison between
EdgeHomoNet and HomoNet. As expected, the baseline
HomoNet has better results given the texture and color in-
formation. This is consistent with results of [6]. However,
our objective is not to replace the image to image (single-
modality) homography estimation. Instead, we would like
to address the problems of cross-modality with shape infor-
mation, such as pixel-wise labeling for remote sensing im-
ages [10], multi-modal image alignment [12, 2], or sports
field registration [3, 8, 9] etc. Interestingly, both HomoNet
and EdgeHomoNet show more accurate results than the
similar homography network experiments in [4]. This
demonstrates the effectiveness of our training approaches.

B. Sports field registration experiments

B.1. Correlation layer

We also follow [5] in using correlation layer. Since we
use two separate, non-identical processing streams (A and
B) for input image IA and edge image EB , a 1x1 conv layer
is added at the end of stream A to reduce the channels from
128 to 32. To limit the computation, a correlation layer with
11x11 window is used, as shown in Figure 1.

Figure 1: Example network architecture with 11x11 cor-
relation layer. ResNet [7] is used as the backbone, and
conv2 x, conv3 x, conv4 x and conv5 x are its four stacked
building blocks.

B.2. Correlation layer evaluation on Hockey dataset

To evaluate the potential benefits of using a correlation
layer, we propose to create more accurate hockey testing
data for two reasons. Firstly, both WorldCup soccer dataset
and Volleyball dataset have too few test samples. Secondly,
we have observed large errors in WorldCup soccer ground
truth. Thus, we create 10,000 ground truth images from 400
4K-resolution hockey images in the same way as the main
paper. The 4K images are from two different arenas. In
addition, because the evaluation with IoUpart and IoUwhole

is highly sensitive to the field of view as observed in [11],
we report mean average corner error defined in [4], which is
actually average mean square errors over 4 points. We use
the same training data and training process for both cases.

Table 2 shows that using a correlation layer leads to bet-
ter performance on large testing data. Due to the computa-
tion cost related to the correlation layer, we only report the
experiments without correlation layer in the main paper.



Mean Average Corner Error
with correlation 1.20
w/o correlation 1.28

Table 2: Homography estimation comparison with and
without correlation layer.

Method Whole IoU Part IoU
mean median mean median

Original [9] 89.8 92.9 95.1 96.7
Corrected [9] 91.61 93.51 96.35 97.35
Original Ours 93.16 94.87 96.61 97.84
Corrected Ours1 95.27 95.89 97.90 98.36
Corrected Ours2 96.06 96.98 98.28 98.78

Table 3: Quantitative results for original ground truth and
corrected ground truth on WorldCup soccer dataset. “Origi-
nal” represents the ground truth from the original WorldCup
dataset. “Corrected” is based on our manually corrected
ground truth. For [9], we use its code [1] and network
weights trained on original ground truth to perform eval-
uation. “Corrected Ours1” represents the results trained
with original ground truth and tested on corrected testing
ground truth, while “Corrected Ours2” trained with cor-
rected ground truth.

B.3. WorldCup soccer dataset: visualization and
ground truth errors

We have found that the original WorldCup dataset
ground truth homographies show some errors. We illus-
trate all ground truths and test results with IoUpart less than
0.883 from our main paper test. As shown in Figure 2, all
those cases with large errors are partially due to the ground
truth errors.

To further demonstrate the effectiveness of our method,
we manually correct the ground truth homographies (both
training and testing data) and also report the results with the
corrected ones. We will also include the corrected ground
truth homographies in the supplementary materials, and will
make them as well as the testing code publicly available in
the future.

Table 3 shows the comparison for the results of origi-
nal and corrected ground truth. For the state-of-the-art [9]
method, we use its code and trained weights [1] to perform
evaluation on both original and corrected testing data and
observe improved performance on corrected ground truth.
For our method, we also train a new model with corrected
training data. Our results show a large improvement with
almost perfect results.
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Golkov, P. v. d. Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In 2015
IEEE International Conference on Computer Vision (ICCV),
pages 2758–2766, 2015.

[6] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Bren-
del. Imagenet-trained cnns are biased towards texture; in-
creasing shape bias improves accuracy and robustness. In
2019 International Conference on Learning Representations
(ICLR), 2019.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In 2016 Euro-
pean Conference on Computer Vision (ECCV), volume 9908,
pages 630–645, 10 2016.

[8] Namdar Homayounfar, Sanja Fidler, and Raquel Urtasun.
Sports field localization via deep structured models. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[9] Wei Jiang, Juan Camilo Gamboa Higuera, Baptiste Angles,
Weiwei Sun, Mehrsan Javan, and Kwang Moo Yi. Optimiz-
ing through learned errors for accurate sports field registra-
tion. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), 2019.

[10] E. Maggiori, G. Charpiat, Y. Tarabalka, and P. Alliez. Recur-
rent neural networks to correct satellite image classification
maps. IEEE Transactions on Geoscience and Remote Sens-
ing, 55(9):4962–4971, 9 2017.

[11] Long Sha, Jennifer Hobbs, Panna Felsen, Xinyu Wei, Patrick
Lucey, and Sujoy Ganguly. End-to-end camera calibration
for broadcast videos. In 2020 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 13627–
13636, 2020.

[12] Armand Zampieri, Guillaume Charpiat, Nicolas Girard, and
Yuliya Tarabalka. Multimodal image alignment through a
multiscale chain of neural networks with application to re-
mote sensing. In ECCV, pages 679–696, 09 2018.



Ground truth Results, IoU=0.819
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Figure 2: Comparison of ground truths and our results with IoUpart < 0.883. Best viewed in color.



Ground truth Results, IoU=0.861
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Figure 2: Comparison of ground truths and our results with IoUpart < 0.883. Best viewed in color.


