
S1. Supplementary materials
These materials are supplements for the main paper. In

section S1.1 we present the best hyper-parameter settings
of our explainability method. In section S1.2, we visually
compare the proposed flip operation with the most popular
ones currently available.

S1.1. Hyper-parameter configuration

S1.1.1 Number of clusters & samples

As the majority of point cloud-based classification al-
gorithms incorporate sampling operations in their pre-
processing, with 1024 generally being the most common
input size, in this section we first investigate the most ap-
propriate hyper-parameter setting for the input size 1024.

We sample the number of clusters with 20, 64, 128 and
1024. To ensure that 10 sets of prediction scores are ob-
tained while at most 50% of the points are flipped in the pro-
posed model-independent verification method, we set the
number of points per cluster to approximate 5% of the in-
put size as the minimum value, i.e., 20 clusters. As the
other extreme, each point is individually regarded as a clus-
ter, where the number of clusters is 1024. 64 and 128 are
randomly picked considering the processing time. We se-
lected 102,102.5,103,103.5 and 104 as the incremental num-
ber of perturbation samples. Tables S2 and S3 present the
local fidelities with various hyper-parameter settings. Note
that R̂2

ω is more convincing when comparing different S be-
cause R2

ω is sensitive to the number of samples S. When
comparing different C, both R2

ω and R̂2
ω can be considered

as references. But since R2 is significant only for S > C,
R2

ω is chosen as a more complete observation. The results
show that the proximity benefit from both greater C and S,
while there is little utility but severe time-consuming when
S exceeds a certain threshold (S magnifies from 103 to 104).
On the other hand, augmenting C dramatically enhances the
fidelity of the surrogate model due to the alleviation of attri-
bution neutralization. However, explaining points individ-
ually suffers from loss of the semantic meaning of clusters
(see figure 1), which is more incomprehensible to humans.

The plausibilities under different combinations of hyper-
parameters are depicted in figures S2 and S3. Identical to
the local fidelity, the plausibility benefits from enlarging the
number of clusters as well, whereas they both suffer from
the semantic issue. On the other hand, enhancing the plau-
sibility via additional perturbation samples is ineffective. At
the expense of 10 times the number of perturbed samples,
only less than 0.1 additional plausibility is achieved, which
is unacceptable for point clouds with the high demand of
real-time. The time costs under a various number of sam-
ples are presented in table S1. Since the run time of the
explaining process is independent of the number of clus-
ters, we only demonstrate its relationship to the number of

perturbation samples S.
Though point-wise explanation outperforms the cluster-

based one, it assumes a sufficiently large number of pertur-
bation samples. However in industrial applications, models
may involve large-scale point clouds as inputs that are com-
posed of millions of points. We therefore strongly recom-
mend an appropriate number of clusters in the trade-off be-
tween performance and real-time capability. For instance,
a point-wise explanation of an instance composed of 104

points with 104 samples takes 507 seconds, and this cost ex-
plosively grows to 3909 seconds when perturbing 105 num-
ber of samples. Note that a theoretically complete explana-
tion for the aforementioned instance requires 210

4

perturbed
samples, whose processing time is apparently unacceptable
in practice.

To summarize, we find that setting C = 128 and S =
103 is most suitable for the most popular point cloud clas-
sification model with 1024 sampling points as input. Al-
though the point-by-point explanation dominates in perfor-
mance, when dealing with large-scale point clouds, a suit-
able choice of cluster number for explanation is recom-
mended considering the time cost.

S1.1.2 Sensitivity study of kernel width

The kernel width w is another relevant hyper-parameter that
impacts the explanations. To explore the best performing
kernel width we sample the kernel width from 0.05 to 0.3
with step 0.05, which is empirically an appropriate range
of kernel width for point clouds, and with the remaining
hyper-parameters identical. The results of the sensitivity
study are presented in figure S1. According to the results,
we observe that the performance peaks at a kernel width of
0.1 and then inconspicuous degrades with further increasing
kernel width. Our proposed point cloud-applicable explain-
ability method exhibits low sensitivity to the kernel width
in an appropriate interval.

S 102 102.5 103 103.5 104

Time(s) 1.05 2.21 5.62 17.51 58.96
Table S1. Average processing time (in seconds) of LIME on single
point cloud instance concerning the number of perturbed samples.
All values are recorded as the average of 1000 experiments.

S1.2. VISF VS. traditional flipping operations

Fig. S4 compares the three aforementioned flipping op-
erations in section 3.1.3. As can be seen from the figure,
the currently most popular flipping operations (i.e. replac-
ing the candidate points to be flipped with zeros and means
of the rest points) fail to eliminate additional interference
of flipping. As there is a lumpy collection of overlap-
ping points at a specific location, it is difficult to determine
whether the variations in predicted scores are independent



Figure S1. Plausibility (left) and local fidelity (right) of proposed method under different kernel widths w. For conciseness, we only
demonstrate the coefficient of determination R2

ω as the distance metrics (e.g. L1) share the similar trend with R2
ω .

C Lm L1 Lω
1 L2 Lω

2 R2
ω R̂2

ω

20 4.28× 10−1 7.84× 10−1 2.91× 10−1 3.02 4.23× 10−1 0.239 0.223
64 4.47× 10−2 1.88× 10−1 1.27× 10−1 2.77× 10−1 1.21× 10−1 0.249 0.198
128 1.03× 10−2 8.90× 10−2 6.95× 10−2 7.84× 10−2 4.82× 10−2 0.345 0.249

1024 1.28× 10−4 1.00× 10−2 8.73× 10−3 1.73× 10−3 1.41× 10−3 0.883 \
Table S2. Local fidelity metrics of different C with 1000 perturbation samples.

S Lm L1 Lω
1 L2 Lω

2 R2
ω R̂2

ω

102 5.30× 10−2 1.86× 10−1 7.78× 10−2 3.03× 10−1 7.59× 10−2 0.389 -0.728
103 4.47× 10−2 1.88× 10−1 1.27× 10−1 2.77× 10−1 1.21× 10−1 0.249 0.198
104 2.64× 10−2 1.88× 10−1 1.38× 10−1 2.63× 10−1 1.34× 10−1 0.209 0.204

Table S3. Local fidelity metrics of different S with 64 clusters.

Figure S2. Means of prediction scores for different combinations of parameters of LIME. C denotes the number of clusters (features) and
S denotes the number of samples used to train the surrogate model. The red and blue lines indicate the means of flipping positive and
negative contributing points, while the green line indicates random flipping of the same percentage of arbitrary points.



Figure S3. Plausibility with different hyper-parameter settings, i.e. p̄.15, p̄.3 and p̄.5.

of this lump of points. In contrast, the instances flipped by
VISF contain no similar lump, leading to a more convincing
association of predicted scores with important features.



Figure S4. Visualization of three different flipping methods (20% points are flipped). Zero and mean denotes replacing the candidate points
to be flipped with zeros and the mean of the three axes of rest points respectively. VISF denotes our Variable input size flipping. The more
overlapped points located at the same coordinates, the larger the diameter of that point in the image. For better observation, the points of
the flipped destination are marked in red.


