Supplementary Material for
Self-supervised Video Representation Learning
with Cross-Stream Prototypical Contrasting

1. Example code for ViCC

Here, we provide pseudocode in PyTorch-like style for
the implementation of the cross-stream stage of ViCC-
RGB. For the definition of the function sinkhorn that de-
scribes the Sinkhorn-Knopp algorithm we refer to [6].

Pseudocode for ViCC-RGB-2 in PyTorch-like style

# rgb_model: encoder network for RGB
# flow_model: encoder network for flow, frozen
# temp: temperature
for rgb, flow in loader: # B samples
# two augmented versions for two streams
rgb_i, flow_i = aug(rgb_i, flow_1i)
rgb_j, flow_j = aug(rgb_j, flow_j)
# get RGB and flow embeddings: 2B x D
z_rgb = cat (rgb_model (rgb_1i), rgb_model (rgb_j))
z_flow = cat (flow_model (flow_1i), flow_model (flow_3j))
# get similarity with prototypes C_rgb, C_rgb in D x K
sim_rgb_i, sim_rgb_j = mm(z_rgb, C_rgb)
sim_flow_i, sim_flow_j = mm(z_flow, C_rgb)
# compute assignments
with torch.no_grad() :
g _rgb_i, g_rgb_j, g_flow_i, g _flow_j =
(sim_rgb_1i), (sim_rgb_j),
(sim_flow_i), (sim_flow_7j)
# convert similarity scores to probabilities
p_rgb_i, p_rgb_j, p_flow_i, p_flow_j =
(sim_rgb_i / temp), (sim_rgb_3j / temp),
(sim_flow_i / temp), (sim_flow_j / temp)

# predict cluster assignments using three other views
1l rgb_i = g_rgb_i * log(p_rgb_j)
+ g rgb_i % log(p_flow_1i)
+ g rgb_i % log(p_flow_j)
1 rgb_j = g.rgb_j » log(p_rgb_1i)
+ g_rgb_J * log(p_flow_1i)
+ g_rgb_j x log(p_flow_j)
1_flow_i = g_flow_i % log(p_rgb_1i)
+ g _flow_1i * log(p_rgb_j)
+ g_flow_i * log(p_flow_3j)
1_flow_3j = g_flow_3j * log(p_rgb_i)
+ g_flow_3j * log(p_rgb_Jj)
+ g _flow_j *» log(p_flow_1i)
# combine for total loss for rgb model
loss = - 1/4 » (1/3 = 1l_rgb_i + 1/3 » 1_rgb_7j +
1/3 » 1_flow_i + 1/3 % 1_flow_j)
# optimizer update and normalize prototypes
loss.backward()
update (rgb_model.params), update (C_rgb)
with torch.no_grad() :
C_rgb = normalize (C_rgb, dim=0, p=2)

2. Implementation Details
2.1. Implementation and Training

SGD with LARS [35] is used as the optimizer. A learn-
ing rate of 0.6, a weight decay of 10~ and a cosine learning
rate schedule with a final learning rate of 6 x 10~ are cho-
sen. The temperature 7 is set to 0.1, the Sinkhorn regular-
ization parameter € is set to 0.05 and we perform 3 iterations
of the Sinkhorn-Knopp algorithm. We use batch shuffle [17]]
to avoid the model exploiting local intra-batch information

leakage for trivial solutions. For single-stream, the proto-
types are frozen during the first 100 epochs of training. For
cross-stream, the prototypes are directly updated from the
start of the training.

2.2. Queue

To store additional features for use in the assignment to
prototypes, we employ a queue in line with [6]. With 4
GPUs and a total batch size of 48 x 4 = 192, we adopt a
queue of size 1920 to store features from the last 10 batches.
The queue is introduced when the evolution of features is
slowing down, i.e. when the decrease of the loss function
is moderate. For single-stream RGB (RGB-1) we introduce
the queue at 150 epochs and for Flow-1 we introduce the
queue at 200 epochs. For the cross-stream stage, we intro-
duce the queue at 25 epochs in each alternation.

3. Additional results
3.1. Analysis of Prototypes

This section focuses on further analysis of the proto-
types. The main purpose of the prototype sets in ViCC is
to guide the contrasting of groups of views from streams in
each iteration. In combination with the relatively stable per-
formance observed when varying the number of prototypes,
we conjecture that the prototypes are not a pseudo-labeling
approach similar to other methods [3} 2} 11} 5} 33]]. Despite
this intuition and our use of soft assignments, we investi-
gate the prototypes by visualizing video samples assigned
to the same prototypes when rounding the assignments. We
also evaluate the rounded prototype assignments from sev-
eral of our self-supervised stages on standard cluster evalu-
ation metrics.

3.1.1 Visualization of Prototypes

In Figure [I| we show the hard assignment of video samples
to random prototypes. Video samples with the highest sim-
ilarity scores to the prototype clusters are visualized. Pro-
totype scores are indicated on the samples and the ground
truth class labels of the samples are indicated below the
groups. We can observe that video samples assigned to the
same prototypes share semantic similarity and even belong
to the same action class, despite the fact that class labels
are not used during ViCC training. The prototypes seem
effective at grouping together views from the same seman-
tic class label, as the samples visualized are all from the
same class. These semantically similar sets in ViCC thereby
provide an advantage for video representation learning over
methods that use contrastive instance learning.



0.93 0.82 0.81 0.86

0.83 0.89 0.93 0.82

0.90 0.91 0.83 0.84

0.92 0.93 0.93 0.82

BoxingPunchingBag PoleVault

0.86

0.87

0.89

0.92

PlayingDhol

0.88 0.83 0.87 0.90 0.93

0.84 0.94 0.82 0.94 0.95

0.95 0.92 0.80 0.95 0.93

0.91

0.65

Bowling Mixing

Figure 1. Visualization of rounded assignments to random ViCC prototypes using videos from UCF101. Samples with high similarity
scores (visualized on the samples) to the prototypes are shown. The ground truth labels of all the video samples are included below (not

used during training).

Method Acc NMI ARI Entropy Max Purity
ViCC-RGB-1 323 625 164 1.6 36.8
ViCC-Flow-1 344 63.1 17.6 1.5 39.1
ViCC-RGB-2 40.8 67.8 245 1.4 45.1
ViCC-Flow-2 403 67.0 235 1.4 453

Table 1. Cluster evaluation of ViCC prototypes when rounding
the assignments evaluated on the UCF101 test set.

3.1.2 Cluster evaluation

In this section, we evaluate the hard assignment of our pro-
totype sets with standard cluster evaluation measures as
done in [} [3]. Although the ground truth number of clus-
ters is not known in advance for self-supervised training, we
set the number of prototypes to K=101 for evaluation pur-
poses only to match the number of class labels for UCF101.
The Hungarian algorithm [21] is then used to match self-
supervised labels to the ground truth labels to obtain ac-
curacy (Acc). We also report the Normalized Mutual In-
formation (NMI), Adjusted Rand Index (ARI), mean en-
tropy per cluster (where the optimal number is 0) and mean
maximal purity per cluster as defined in [3]. For example,
the NMI ranges from O (no mutual information) to 100%
(implying perfect correlation between self-supervised la-
bels and the ground truth labels). Table [I] shows that our
prototypes from the cross-stream stage (RGB-2 and Flow-
2) obtain better performance on all measures compared to
prototypes learned only on their own stream (RGB-1 and
Flow-1), achieving e.g. a higher NMI, lower mean entropy
per cluster and higher mean maximal purity.

3.2. T-SNE Visualization

In this section, we visualize ViCC representations of the
UCF101 test set using the t-SNE clustering algorithm [30]
to project features to 2D. For clarity, only 10 random ac-

ViCC-RGB-1
1.0 © ApplyEyeMakeup [ Y
@ BalanceBeam ‘ °0 o Q)O.
o BaseballPitch °g o °
O BasketballDunk ° ® wo .'
o Billiards £°o
@ CricketBowling @ ® o @ 0q® @ °
@ FieldHockeyPenalty W o ° .. ®
° FrlsbeeF:atch W'. é) ™Y ®
@ GolfSwing o
© ParallelBars : %% ,
&) FE °
SN
®3> o)
0“4
“A 1.0
ViCC-RGB-2
1 O&
()
&S ad
@ ado O.. ....
“;o& ; ‘Q ® o ° 00\.
} °
P g
Q () «®
4 % o.i . ® Py
(e}
% e® L ®
[$)
Wi %”%

Figure 2. T-SNE visualization of the feature representations of
UCF101 test set after 500 epochs of ViCC training. On the top
RGB-1 single-stream is shown and on the bottom RGB-2 cross-
stream.

tion classes are visualized with a limited amount of random
features for each class. Figure [2] shows the t-SNE visual-
ization of features extracted from single-stream (RGB-1)



Queue size
Method 3840 1920 O
VICC-RGB-2 84.5 843 84.7
VIiCC-R+F-2 904 90.5 90.2

Table 2. Impact of queue size. We report Top-1 accuracy on ac-
tion recognition finetuning on UCF101.

and cross-stream (RGB-2) trained using the same number
of epochs (500). It can be observed that the inter-class dis-
tance between certain classes such as CricketBowling and
GolfSwing is increased from RGB-1 to RGB-2. Moreover,
the intra-class distance is reduced for classes FrisbeeCatch,
BasketballDunk and ApplyEyeMakeup, which can be at-
tributed to the benefit of motion learning from the flow en-
coder in cross-stream.

3.3. Impact of queue size

We investigate the effect of the queue size on perfor-
mance. The queue is used in the assignment of features to
K prototypes. In theory, using more features in each itera-
tion on top of the current batch should result in a more ac-
curate assignment for the Sinkhorn-Knopp algorithm. Re-
sults for queue sizes {3840, 1920, 0} are shown in Table
We report Top-1 accuracy on action recognition on UCF101
finetuning. For queue size 3840, we observe that the larger
queue size is not necessary or beneficial for UCF101 self-
supervised pretraining, as the differences in performance
are minimal. We also find that using no queue almost per-
forms on par with our default queue size of 1920. We con-
jecture that our mini-batches may already provide enough
features for ViCC self-supervision on UCF101.

3.4. More comparison with self-supervised works
on action recognition

In Table [3] we list more results from self-supervised
methods evaluated on action recognition. Results for the
additional backbone R3D-18 [[16] are included. We achieve
better performance than several methods that use the R3D
backbone. Our overall best result on the S3D backbone still
outperforms almost all methods pretrained on UCF101. We
also outperform several methods pretrained on the larger
dataset K-400, and achieve competitive performance com-
pared to CVRL [2§].
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Pretrain stage Linear Finetune

Method Year Dataset Backbone Param Res Frames Modality UCF101 HMDBS51 UCF101 HMDBSI1
OPN [22] 2017 UCF101 VGG 8.6M 80 16 \% - - 59.8 23.8
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ViCC-RGB (ours) UCF101 R2+1)D 144M 128 16 \Y% 74.4 30.8 82.8 524
ViCC-R+F (ours) UCF101 R2+1)D 144M 128 16 \% 78.3 45.2 88.8 61.5
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ViCC-RGB (ours) UCF101 S3D 88M 128 32 \% 72.2 38.5 84.3 47.9
ViCC-R+F (ours) UCF101 S3D 8.8M 128 32 v 78.0 47.9 90.5 62.2

Table 3. Comparison with prior self-supervised works on video action recognition on UCF101 and HMDBS51 for finetuning and linear
probe. We report Top-1 accuracy, compare with self-supervision pretraining on UCF101 and additionally report results on backbone R3D

[16].

(20]

(21]

(22]

(23]

[24]

In

Dahun Kim, Donghyeon Cho, and In So Kweon. Self-
Supervised Video Representation Learning with Space-Time
Cubic Puzzles. In AAAI, 2019.

H. W. Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):83-97,
1955.

Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Unsupervised Representation Learning by
Sorting Sequences. In ICCV, 2017.

Dezhao Luo, Chang Liu, Yu Zhou, Dongbao Yang, Can Ma,
Qixiang Ye, and Weiping Wang. Video Cloze Procedure for
Self-Supervised Spatio-Temporal Learning. In AAAI, 2020.

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan

(25]

[26]

color we show larger pretraining datasets such as K-400 [8] and multi-modal datasets (where T is text, A is audio).

Laptev, Josef Sivic, and Andrew Zisserman. End-to-End
Learning of Visual Representations from Uncurated Instruc-
tional Videos. In CVPR, 2020.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
HowTol0OM: Learning a Text-Video Embedding by
Watching Hundred Million Narrated Video Clips. In ICCV,
2019.

Mandela Patrick, Yuki M. Asano, Polina Kuznetsova, Ruth
Fong, Jodo F. Henriques, Geoffrey Zweig, and Andrea

Vedaldi. Multi-modal Self-Supervision from Generalized
Data Transformations. ArXiv preprint arXiv:2003.04298,
2020.



[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

A. J. Piergiovanni, Anelia Angelova, and Michael S. Ryoo.
Evolving Losses for Unsupervised Video Representation
Learning. In CVPR, 2020.

Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang,
Huisheng Wang, Serge Belongie, and Yin Cui. Spatiotem-
poral Contrastive Video Representation Learning. In CVPR,
2021.

Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia
Schmid.  Learning Video Representations using Con-
trastive Bidirectional Transformer. ArXiv preprint
arXiv:1906.05743, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-SNE. Journal of Machine Learning Research,
9:2579-2605, 2008.

Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu.  Self-
supervised Video Representation Learning by Pace Predic-
tion. In ECCV, 2020.

Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and
Yueting Zhuang. Self-Supervised Spatiotemporal Learning
via Video Clip Order Prediction. In CVPR, 2019.

Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadi-
yaram, and Dhruv Mahajan. ClusterFit: Improving General-
ization of Visual Representations. In CVPR, 2020.

Yuan Yao, Chang Liu, Dezhao Luo, Yu Zhou, and Qix-
iang Ye. Video Playback Rate Perception for Self-
supervisedSpatio-Temporal Representation Learning. In
CVPR, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large
Batch Training of Convolutional Networks. ArXiv preprint
arXiv:1708.03888, 2017.

Chengxu Zhuang, Tianwei She, Alex Andonian, Max Sobol
Mark, and Daniel Yamins. Unsupervised Learning from
Video with Deep Neural Embeddings. In ArXiv Preprint
arXiv:1905.11954, 2020.



