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In this supplementary materials, we provide some addi-
tional ablation study on MVTec AD dataset and the exper-
imental results on the challenging dataset, Magnetic Tile
Surface Defects. We also illustrate our network architec-
tures of the encoders and make an analysis on the time com-
plexity of our model.

1. Ablation Study
1.1. Different CNN Architectures

We compare model train-from-scratch, model pretrained
on VGG16 without fine-tuning, and model pretrained on
different CNN architectures with fine-tuning (Table 1) in
Table 2. It is obviously that without pretrained CNN archi-
tectures, the performance significantly drops for all classes.
The result of model pretrained on VGG16 without fine-
tuning can be regarded as the baseline performance for val-
idating the benefit of representation learning. Our study
shows that deeper CNN architectures, such as ResNet, do
not produce better results. This may be caused by the sim-
ple structure of the images in the MVTec AD dataset. How-
ever, the light-weight models, such as AlexNet, do not lead
to better results, either. Even though the image structure
is simple, the semantics of the patches and the relationship
between the patches still require an adequate depth of CNN
architecture for a better feature extraction.

1.2. Different K Groups of K-means Clustering

The selection of the parameter K in the K-means cluster-
ing is another important issue in our model. In Table 3, we
study the influence of difference K’s through experimental
evaluation of MVTec AD dataset. We observe that K = 50
is the sweet spot for all classes. If we set a smaller K, the
clusters may not be enough to distinctly separate patch em-
beddings in the feature space. On the contrary, a larger K
can cause the embeddings disperse too much. However, the

Table 1. Comparison between different pretrained CNN archi-
tectures. The average inference time per image is calculated on
MVTec Dataset.

Model Size (MB) Depth Inference Time (Sec.)

AlexNet 244.80 8 1.17

MobileNet 213.78 88 2.81

VGG16 (Ours) 814.18 23 2.29

VGG19 860.43 26 2.51

ResNet18 127.35 18 2.23

ResNet50 472.52 50 3.53

Table 2. Study of the image-level anomaly detection and the pixel-
level anomaly segmentation performance with model train-from-
scratch, pretrained on VGG16 without fine-tuning, and pretrained
on different CNN architectures with fine-tuning on MVTec AD
dataset. The results are reported with AUROC%.

Class All Texture Classes All Object Classes All Classes

Task det. seg. det. seg. det. seg.

Train-from-scratch 94.6 89.7 87.1 95.0 89.6 93.2

VGG16 w/o fine-tune 95.5 87.4 89.7 89.6 91.6 88.9

AlexNet 96.0 94.9 93.2 97.6 94.1 96.7

MobileNet 96.2 97.0 96.5 98.1 96.4 97.7

VGG16 (Ours) 97.7 97.6 98.4 98.4 98.1 98.1

VGG19 95.5 94.4 97.6 98.2 96.9 96.9

ResNet18 98.8 96.6 94.5 97.7 95.9 97.4

ResNet50 97.3 96.1 93.4 97.3 94.7 96.9

result does not show significant difference for object classes
with different K’s in our model. We attribute it to the con-
tributions of other losses, which is justified in our ablation
study for each loss function as we discussed earlier.



Table 3. Study of the image-level anomaly detection and the pixel-
level anomaly segmentation performance with different K groups
of K-means on MVTec AD dataset. The results are reported with
AUROC%.

Class All Texture Classes All Object Classes All Classes

Task det. seg. det. seg. det. seg.

K=10 97.0 95.0 97.6 98.0 97.4 97.0

K=30 95.3 95.9 96.8 97.6 96.3 97.0

K=50 (Ours) 97.7 97.6 98.4 98.4 98.1 98.1

K=100 96.2 95.7 97.9 98.3 97.3 97.4

Table 4. Comparison of our models with the SOTA methods
for both the image-level anomaly detection and the pixel-level
anomaly localization performance on Magnetic Tile Surface De-
fects dataset. The results are reported with AUROC%.

det. seg.

MCuePushU [2] (supervised) - 98.5

DifferNet [3] (unsupervised) 97.7 -

Ours (unsupervised) 98.7 74.0

2. Magnetic Tile Surface Defects
The Magnetic Tile Surface Defects dataset is released

by [2] in IEEE. It is a challenging dataset with 1344
grayscale images, which contains 952 defect-free images
and 392 defective images. The defect types are Uneven,
Crack, Fray, Blowhole, and Break respectively. All the
images have different resolution and illuminations. We re-
size all the images to 128× 128 in our experiments.

We compare our model with MCuePushU [2] and Dif-
ferNet [3] in Table 4. MCuePushU [2] performs a good
anomaly segmentation result since it uses the supervised
learning approach, and our model adopts the unsupervised
learning method instead. It can be observed that our model
performs well on the anomaly detection task yet we struggle
on the anomaly segmentation task. This is due to the differ-
ent illuminations among images. We do not have a specific
strategy to make our model pay attention to those illumi-
nations, and thus, our model tends to recognize the bright
regions as anomalies in most cases. Figure 1 shows some
example results of well detected cases and failure cases.

3. Network Architecture
The detailed architectures of our encoder Enc64, Enc32,

and Enc16 are shown in Figure 2. The convolutional ker-
nels are different layer by layer. The paddings are all set to
1 and we do not apply dilation. Every convolutional layer is
followed by a leaky rectified linear unit (LeakyReLU) acti-
vation function.

Figure 1. Examples results from Magnetic Tile Surface Defects
dataset. The left part shows the well detected examples and the
right part is the failure cases. The predicted anomaly segmentation
maps are obtained by applying the proposed system. We compare
our predicted masks with MCuePushU [2] and DifferNet [3].

Figure 2. The detailed architecture of our encoders, Enc64,
Enc32, and Enc16. The selection of the layer in VGG16 is ac-
cording to different patch size. Note that all encoders output
64× 1× 1 feature for the same architecture of classifier C.

Our classifier C is constructed by 3 fully-connected lay-
ers followed by LeakyReLU except the last layer.

Table 5. Average inference time of testing images on the MVTec
AD dataset with a CPU Intel(R) Core(TM) i7-8700K CPU @
3.70GHz and GPU GeForce GTX 1080 Ti. The inference time
is calculated as total inference time/number of images.

PaDiM [1] Patch SVDD [4] Ours (2-scale) Ours (3-scale)

seconds per image 0.95 1.09 1.81 2.29

4. Time Complexity
During the training procedure, our model is easy to train

since it uses pretrained CNN architectures and the encoders
are tiny with simple architectures. For the inference phase,
our model takes longer time than the previous state-of-the-
art method, PaDiM [1], and the method Patch SVDD [4],
as shown in Table 5. This is mainly caused by our multi-
scale patches architecture. With more different scales or
smaller sizes of patches, our inference time increases. It



can be regarded as a trade-off between the accuracy and the
time complexity.
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