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1. Introduction
This document is organized as follows: Section 2 con-

tains the details of complex-valued operations, Section 3
presents the visual schematic of the network architecture,
Section 4 contains the details of the training settings, Sec-
tion 5 compares the number of trainable parameters in real-
valued and equivalent complex-valued networks, Section
6 contains the qualitative results of the ablation study and
comparison of various activation functions, Section 7 con-
tains the learning curves, Section 8 compares the recon-
struction time of the proposed approach with other deep
learning (DL) based methods, Section 9 presents the abla-
tion study of the loss function, Section 10 shows the high-
resolution versions of the qualitative results for MICCAI
2013 and fastMRI datasets and the reconstruction results for
the MRNet dataset, Section 11 shows the images of zero-
filled reconstruction, Section 12 presents the performance
of our method for various sampling ratios and patterns, and
Section 13 contains the qualitative results of zero-shot in-
ference.

2. Complex-valued Operations
Convolution: The complex-valued equivalent of real-

valued 2D convolution for a complex-valued kernel W =
WR + iWI with complex-valued feature maps F = FR +
iFI, is given by A = W ∗ F = AR+iAI, where ∗ denotes
convolution operation, i denotes the imaginary unit, and

AR = WR ∗ FR −WI ∗ FI,

AI = WR ∗ FI + WI ∗ FR,
(1)

similar to complex-valued multiplication. The subscripts R
and I denote the real and imaginary parts of the complex-
valued entities, respectively. To implement this, we make
use of real-valued tensors, where W (F) is stored by con-
catenating WI (FI) to WR (FR). The resultant includes
four real-valued 2D convolutions as defined in (1), and is
stored in a similar manner by concatenating AI to AR.

*Equal contribution; Work done while at IIT Roorkee.

Backpropagation: Backpropagation can be performed
on a function f that is non-holomorphic as long as it is dif-
ferentiable with respect to its real and imaginary parts [3].
Since all the loss functions considered in this work are real-
valued, we consider f to be a real-valued function of l-
dimensional weight vector w. The update rule of w using
gradient descent is written as:

w = w − ρ∇w̄f(w), (2)

where ρ is the learning rate (LR), w̄ denotes the complex
conjugate of w, and the gradient of f is calculated as:
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Batch Normalization: We make use of the complex
batch normalization (CBN), proposed in [4]. To ensure that
the complex data is scaled in such a way that the distribu-
tion of real and imaginary components is circular, the 2D
complex vector can be whitened as shown below:

xstd = B− 1
2 (x− E[x]), (4)

where B denotes the covariance matrix, and E denotes ex-
pectation operator. B can be represented as:

B =

[
Cov(xR,xR) Cov(xR,xI)
Cov(xI,xR) Cov(xI,xI)

]
. (5)

Learnable parameters γ, β are used to scale and shift the
aforementioned standardized vector as follows:

xBN = γxstd + β, (6)

where γ is a 2× 2 matrix, and β is a complex number.

3. Network Architecture
Fig. 1 shows the visual diagram of the network architec-

ture of the proposed framework.



Figure 1: (a) Proposed dense U-net generator architecture with RRDBs and (b) discriminator architecture.

4. Training settings
For implementing the models, the Keras framework with

TensorFlow backend is used. The models are trained us-
ing 4 NVIDIA GeForce GTX 1080 Ti GPUs. In this work,
the batch size is set as 16. In the generator, each layer pro-
duces 32 feature maps. 4 residual-in-residual dense blocks
(RRDBs) are present in the bottleneck layer, the number of
dense blocks is set as 8, and α is 0.2. The absolute value of
the discriminator weights is clipped at 0.05, and nD is set
as 3. For training the models, we use Adam optimizer [2],
with β1 = 0.5 and β2 = 0.999. The initial learning rate is
set as 10−4, with a decay of 1.39×10−3, so that it becomes
1/10th of the initial value after five epochs.

5. Trainable Parameters in Real- and
Complex-valued Networks

To consider the real-valued version of the fifth case as
the sixth in the ablation study, each convolutional layer is
converted from complex to real by doubling the number of
output channels present in each layer.

For complex-valued networks, trainable parameters in-
clude both real and imaginary components of the network
weights. The number of parameters of a convolutional layer
is given by W × H × I × C, where W denotes the width
of the convolutional filter, H denotes the height, I denotes
the number of input channels, and C denotes the number
of output channels. For the complex-valued case, the num-
ber of trainable parameters would be 2×W ×H × I ×C,
as each filter weight has a real and imaginary component.
As mentioned in the manuscript, we doubled the num-
ber of channels in each layer in the 6th case, leading to
W×H×2I×2C = 4×W×H×I×C parameters, which
is twice the number of trainable parameters as compared to
the 5th case. These figures account for the trainable param-
eters due to the convolutional layers. The actual number is
not exactly twice due to the trainable parameters used by
the activation and batch normalization layers.



Figure 2: Qualitative results for ablation study of the proposed model. (a) GT, reconstruction results for (b) 1st, (c) 2nd, (d)
3rd, (e) 4th, (f) 5th, and (g) 6th network settings. Inset- top right: the ZiR enclosed by the red box, bottom right: the absolute
difference between the ZiR and its corresponding GT.

Figure 3: Qualitative comparison of various activation functions. (a) GT, reconstruction results using (b) zReLU, (c) CReLU,
(d) CPReLU, (e) Cardioid, (f) PP-WSS, (g) TIP-WSS, and (h) PC-WSS activation functions. Inset- top right: the ZiR
enclosed by the red box, bottom right: the absolute difference between the ZiR and its corresponding GT.

6. Qualitative Results (Ablation Study and Ac-
tivations)

Figs. 2 and 3 show the qualitative results for the ablation
study of the proposed model and the comparison of various
activation functions, respectively.

7. Learning Curves

The learning curves (loss value vs. iteration) for the pro-
posed method are shown in Fig. 4. These values are ob-
tained when the proposed method is trained on 30% 1D
Gaussian (1D-G) undersampled images from the MICCAI
2013 dataset. It can be seen from the plots that all the losses
decrease and converge within 5000 iterations.



Figure 4: Learning curves for the proposed method.

Table 1: Runtimes of SOTA deep learning-based methods for CS-MRI reconstruction.

Method DeepADMM [6] MoDL [1] DAGAN [5] Co-VeGAN (Proposed)

Runtime (ms) 313.50 82.33 6.27 34.14

8. Reconstruction Time

The runtimes (time taken to reconstruct an MR image) of
state-of-the-art (SOTA) DL-based methods are shown in Ta-
ble 1. These values are obtained for 30% 1D-G undersam-
pled images from the MICCAI 2013 dataset. The runtime
of the proposed approach is in milliseconds, which is suit-
able for real-time reconstruction of MR images. Although
it is second-best in this context, the proposed approach ob-
tains superior reconstruction with significantly fewer train-
able parameters, thereby lowering the storage requirement.

9. Ablation Study of the Loss Function

Table 2 shows the results of the ablation study of the loss
function. These results were obtained by using a lighter
version of the final model in the manuscript which has fewer
trainable parameters. We use the fastMRI dataset with batch
size 10 to train the model.

We see that in the absence of MAE loss, the PSNR is sig-
nificantly low. This is because both SSIM and wavelet loss
focus only on the reconstruction of the magnitude content.
In the second case, when we add MAE loss, the PSNR value
improves but the PSNR and mSSIM values are lower than

Table 2: Results for ablation study of the loss function.

Loss Model 1 Model 2 Model 3 Model 4

MAE 7 3 3 3
SSIM 3 7 3 3

Wavelet 3 3 7 3

PSNR (dB) 19.446 32.864 33.747 33.887
mSSIM 0.7993 0.7240 0.7689 0.7710

the next two cases because the SSIM loss, which focuses
on the reconstruction of the high-frequency content, is not
used. In the third case, we observe that using the SSIM
leads to an increase in both PSNR and mSSIM values. Fi-
nally, adding wavelet loss improves the reconstruction of
mid-frequency content, leading to better PSNR and mSSIM
values.

10. Qualitative Results and Comparison

Figs. 5 and 6 show the high-resolution versions of the
figures showing qualitative results of the proposed method
and comparisons with SOTA methods using images from
MICCAI 2013 and fastMRI datasets, respectively.

Fig. 7 shows the qualitative results and comparison using
the MRNet dataset. The qualitative results and the differ-



Figure 5: (Figure 3 in manuscript) Qualitative results and comparison of the proposed method for two images taken from the
MICCAI 2013 dataset. Inset- top right: the ZiR enclosed by the red box, bottom right: the absolute difference between the
ZiR and its corresponding GT.

ence between the reconstructed output and the ground truth
(GT) demonstrate that the proposed method obtains supe-
rior reconstruction results.

11. Zero-filled Reconstruction

Figs. 8 and 9 show the qualitative results of zero-filled
reconstruction (ZFR) of 30% 1D-G undersampled images
from MRNet and fastMRI datasets, respectively.

12. Effect of Sampling Masks

12.1. Sampling Ratio

Figs. 10 and 11 show the qualitative results of the pro-
posed method for various sampling ratios for 1D-G under-
sampled images, taken from the MICCAI 2013 and the
fastMRI dataset, respectively. It is observed that the pro-
posed approach can obtain high-quality reconstructions for
20% and 30% undersampled images for both datasets. Ta-
ble 3 shows the quantitative results for this set of experi-



Figure 6: (Figure 4 in manuscript) Qualitative results and comparison of our method for complex-valued images from fastMRI
dataset. For each method, the two columns show the reconstructed outputs, and their absolute difference with the GT.

Figure 7: Qualitative results and comparison of the proposed method on images from the MRNet dataset. Inset- bottom left:
the ZiR enclosed by the red box, bottom right: the absolute difference between the ZiR and its corresponding GT.



Figure 8: Qualitative results of ZFR for 30% 1D-G undersampled images from the MRNet dataset. Inset- bottom left: the
ZiR enclosed by the red box, bottom right: the absolute difference between the ZiR and its corresponding GT.

Figure 9: Qualitative results of ZFR for 30% 1D-G undersampled images from the fastMRI dataset. (a) GT, (b) ZFR, (c) the
absolute difference between ZFR and GT.

Figure 10: Qualitative results for various sampling ratios using 1D-G undersampled images from the MICCAI 2013 dataset.
(a) GT, reconstruction results of the proposed approach for (b) 10%, (c) 20%, and (d) 30% sampling ratios. Inset- top right:
the ZiR enclosed by the red box, bottom right: the absolute difference between the ZiR and its corresponding GT.

ments. For the MICCAI 2013 dataset, the results obtained
for 20% undersampled images are quantitatively as well

as qualitatively better than the results obtained by some of
the SOTA methods (Table 3 in manuscript) for 30% under-



Figure 11: Qualitative results for various sampling ratios using 1D-G undersampled complex-valued images from the fastMRI
dataset. (a) GT, reconstruction results of the proposed approach for (b) 10%, (c) 20%, and (d) 30% sampling ratios. For all
the ratios, the two columns show the reconstructed outputs, and their absolute difference with the GT.

Figure 12: Qualitative results for various sampling patterns using 30% undersampled images from the MICCAI 2013 dataset.
(a) GT, reconstruction results of the proposed approach for (b) 1D-G, (c) radial, and (d) spiral sampling patterns. Inset- top
right: the ZiR enclosed by the red box, bottom right: the absolute difference between the ZiR and its corresponding GT.



Figure 13: Qualitative results for various sampling patterns using 30% undersampled complex-valued images from the
fastMRI dataset. (a) GT, reconstruction results of the proposed approach for (b) 1D-G, (c) radial, and (d) spiral sampling
patterns. For all the patterns, the two columns show the reconstructed outputs, and their absolute difference with the GT.

Figure 14: Qualitative results of zero-shot inference experiment. (a) GT, (b) reconstruction results of the proposed model
trained on images from the MICCAI 2013 dataset. Inset- top right: the ZiR enclosed by the red box, bottom right: the
absolute difference between the ZiR and its corresponding GT.



sampled images. For the fastMRI dataset, the results ob-
tained for even 10% undersampled images are better than
the results obtained by the baseline (Table 5 in manuscript)
for 30% undersampled images. These observations fur-
ther highlight the superior quality reconstructions achieved
by the proposed approach as compared to SOTA methods.
For 10% undersampled images from both the aforemen-
tioned datasets, the proposed approach is able to obtain a
de-aliased output, where the contrast, as well as a significant
portion of structural content, has been preserved. However,
it is evident that a highly faithful reconstruction may not be
achieved for this ratio in both cases. This is because the k-
space has been highly undersampled, and only 10% of the
data has been retained.

Table 3: Quantitative results (PSNR (dB) / mSSIM) for var-
ious sampling ratios

Dataset Sampling Ratio

10% 20% 30%

MICCAI 2013 35.799 / 0.9485 41.396 / 0.9817 45.678 / 0.9927
fastMRI 30.596 / 0.6673 32.512 / 0.7356 34.538 / 0.7893

Table 4: Quantitative results (PSNR (dB) / mSSIM) for var-
ious sampling patterns

Dataset Sampling Pattern

1D-G Radial Spiral

MICCAI 2013 45.678 / 0.9927 46.629 / 0.9922 46.747 / 0.9929
fastMRI 34.538 / 0.7893 34.173 / 0.7819 33.918 / 0.7745

12.2. Sampling Pattern

Figs. 12 and 13 demonstrate the visual outputs generated
by the proposed approach for comparing various sampling
patterns, using 30% undersampled images, from the MIC-
CAI 2013 dataset and the fastMRI dataset, respectively. For
both the datasets, highly accurate recoveries are achieved
for all three sampling masks, as evident from the difference
between the generated output and the GT. For the MICCAI
2013 dataset, this difference is close to zero, signifying the
proposed method’s ability to reconstruct the finest details as
seen in the zoomed in region (ZiR). For the fastMRI dataset,
the proposed method obtains high-quality reconstruction of
both magnitude and phase images. These experiments show
that our method generalizes well to various sampling pat-
terns. This is also supported by the quantitative results for
this set of experiments shown in Table 4.

13. Zero-shot Inference
The qualitative results of zero-shot inference are shown

in Fig. 14. We can see that although the images of ca-
nine legs (used to test the model) are of a completely dif-
ferent anatomy compared to brain (used for training), our
approach can obtain high-quality reconstruction.
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