Supplementary Material

1. Structure of the policy network

We use a VGG-16 style architecture as our policy network. Different from the vanilla VGG-16, which is designed for image classification, we use 1D convolution instead. The detailed architecture of the policy network is presented in Table 1.

Table 1: The network architecture of the policy network. \(N \) is the number of filters in the CNN to be pruned.

<table>
<thead>
<tr>
<th>Index</th>
<th>Layer</th>
<th>Type</th>
<th>Feature map</th>
<th>Kernel size</th>
<th>Stride</th>
<th>Output size</th>
<th>Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Input</td>
<td>Feature</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Nx7</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>conv1_1</td>
<td>1D conv</td>
<td>64</td>
<td>3x3</td>
<td>1</td>
<td>Nx64</td>
<td>ReLu</td>
</tr>
<tr>
<td>2</td>
<td>conv1_2</td>
<td>1D conv</td>
<td>64</td>
<td>3x3</td>
<td>1</td>
<td>Nx64</td>
<td>ReLu</td>
</tr>
<tr>
<td>3</td>
<td>pool1</td>
<td>Pool</td>
<td>-</td>
<td>2x2</td>
<td>2</td>
<td>(N/2)x64</td>
<td>Max</td>
</tr>
<tr>
<td>4</td>
<td>conv2_1</td>
<td>1D conv</td>
<td>128</td>
<td>3x3</td>
<td>1</td>
<td>(N/2)x128</td>
<td>ReLu</td>
</tr>
<tr>
<td>5</td>
<td>conv2_2</td>
<td>1D conv</td>
<td>128</td>
<td>3x3</td>
<td>1</td>
<td>(N/2)x128</td>
<td>ReLu</td>
</tr>
<tr>
<td>6</td>
<td>pool2</td>
<td>Pool</td>
<td>-</td>
<td>2x2</td>
<td>2</td>
<td>(N/4)x128</td>
<td>Max</td>
</tr>
<tr>
<td>7</td>
<td>conv3_1</td>
<td>1D conv</td>
<td>256</td>
<td>3x3</td>
<td>1</td>
<td>(N/4)x256</td>
<td>ReLu</td>
</tr>
<tr>
<td>8</td>
<td>conv3_2</td>
<td>1D conv</td>
<td>256</td>
<td>3x3</td>
<td>1</td>
<td>(N/4)x256</td>
<td>ReLu</td>
</tr>
<tr>
<td>9</td>
<td>conv3_3</td>
<td>1D conv</td>
<td>256</td>
<td>3x3</td>
<td>1</td>
<td>(N/4)x256</td>
<td>ReLu</td>
</tr>
<tr>
<td>10</td>
<td>pool3</td>
<td>Pool</td>
<td>-</td>
<td>2x2</td>
<td>2</td>
<td>(N/8)x256</td>
<td>Max</td>
</tr>
<tr>
<td>11</td>
<td>conv4_1</td>
<td>1D conv</td>
<td>512</td>
<td>3x3</td>
<td>1</td>
<td>(N/8)x512</td>
<td>ReLu</td>
</tr>
<tr>
<td>12</td>
<td>conv4_2</td>
<td>1D conv</td>
<td>512</td>
<td>3x3</td>
<td>1</td>
<td>(N/8)x512</td>
<td>ReLu</td>
</tr>
<tr>
<td>13</td>
<td>conv4_3</td>
<td>1D conv</td>
<td>512</td>
<td>3x3</td>
<td>1</td>
<td>(N/8)x512</td>
<td>ReLu</td>
</tr>
<tr>
<td>14</td>
<td>pool4</td>
<td>Pool</td>
<td>-</td>
<td>2x2</td>
<td>2</td>
<td>(N/16)x512</td>
<td>Max</td>
</tr>
<tr>
<td>15</td>
<td>conv5_1</td>
<td>1D conv</td>
<td>512</td>
<td>3x3</td>
<td>1</td>
<td>(N/16)x512</td>
<td>ReLu</td>
</tr>
<tr>
<td>16</td>
<td>conv5_2</td>
<td>1D conv</td>
<td>512</td>
<td>3x3</td>
<td>1</td>
<td>(N/16)x512</td>
<td>ReLu</td>
</tr>
<tr>
<td>17</td>
<td>conv5_3</td>
<td>1D conv</td>
<td>512</td>
<td>3x3</td>
<td>1</td>
<td>(N/16)x512</td>
<td>ReLu</td>
</tr>
<tr>
<td>18</td>
<td>pool5</td>
<td>Pool</td>
<td>-</td>
<td>2x2</td>
<td>2</td>
<td>(N/32)x512</td>
<td>Max</td>
</tr>
<tr>
<td>19</td>
<td>fc6_1</td>
<td>fc ((\pi))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N</td>
<td>Softmax</td>
</tr>
<tr>
<td>19</td>
<td>fc6_2</td>
<td>fc ((v))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Tanh</td>
</tr>
</tbody>
</table>
2. Pseudocodes of key components in our approach.

Algorithm 1 Get the improved policy π after MCTS search: getPolicyPi(s_i)

Input: Current configuration of the network to be pruned s_i, number of MCTS simulations per action n_{mcts}, total number of filters in the network to be pruned n_f, temperature τ.

Output: π_i

1: `for i in range(n_{mcts}) do`
2: `MCTS(s_i)`
3: `Get $N(s_i,a)$ after MCTS simulations.`
4: `if $\tau = 0$ then`
5: `bestAction = argmax_a $N(s_i,a)$`
6: `$\pi[\text{bestAction}] = 1$`
7: `else`
8: `$\pi = \frac{N(s_i,a)^{1/\tau}}{\sum_b N(s_i,b)^{1/\tau}}$`

`return π`

Algorithm 2 Get training samples from a single iteration: getTrainSamples(s_0)

Input: The raw network to be pruned s_0, pruning ratio γ, trainingAccBaseline b.

Output: trainSamples (s_i, π_i, v)

1: `t = 0, $s_t = s_0$`
2: `trainSamples = []`
3: `while FLOPs(s_t)/FLOPs(s_0) > γ do`
4: `$\pi_t = \text{getPolicyPi}(s_t)$`
5: `trainSamples.append([s_t, π_t])`
6: `nextAction = randomChoice(π_t)`
7: `$s_{t+1} = \text{pruneFilter}(s_t, \text{nextAction})$`
8: `t = t + 1`
9: `if trainAcc(s_t) > b then`
10: `v = 1`
11: `else`
12: `v = -1`
13: `trainSamples = [(x[0], x[1], v) for x in trainSamples]`
14: `return trainSamples`
Algorithm 3 Learn to get the slimmed CNN with RL and MCTS

Input: The raw network to be pruned s_0, neural network for pruning action selection f_θ, number of self-play simulations n_{sim}, maximum training queue length L.

Output: The optimal slimmed CNN s_p

1: totalTrainingQueue = []
2: while stopCounter < n_{sim} do
3: for i in range(n_{sim}) do
4: Initialize MCTS
5: trainingSamples = getTrainSamples(s_0)
6: if len(totalTrainingQueue) > L then
7: totalTrainingQueue.pop()
8: totalTrainingQueue += trainingSamples
9: f_θ = RLTrain(totalTrainingQueue, f_θ)
10: Get the slimmed network s' by pruning s_0 with f_θ
11: if trainAcc(s') > b then
12: $b = \text{trainAcc}(s')$
13: $s_p = s'$
14: stopCounter = 0
15: else
16: stopCounter += 1
17: return s_p