
Semi-supervised Multi-task Learning for Semantics and Depth
Supplementary Material

In this supplementary material, we present the training
procedure of the baseline algorithm and additional imple-
mentation details in the experiments. We also provide the
quantitative analysis of our method and more qualitative
results one the street-view and remote sensing datasets.

1. Joint Training Baseline
We describe the joint training baseline (JTL) [4] in de-

tails, which proposes to update network parameters after ob-
serving sufficient task-specific samples with ground-truths.
Since we have two dense labeling tasks, i.e., semantic seg-
mentation and depth estimation, we extract the annotated
mini-batches for each task to compute the per-task loss and
back-propagate the gradients. After this interleaving forward
and backward process, we update both the task parameters
for task-specific decoders and the cumulative parameters for
the shared encoder. The iterative joint training method is
illustrated in Algorithm 1, where Lt

gt denotes the supervised
loss for each task t and wt weighs the importance of each
task-specific loss.

Algorithm 1 Procedure of the joint training baseline.
for iteration i = 1 to N do

for dataset k ∈ {1, . . . ,K} do
{construct mini-batch}
for task t = 1, . . . , |T | with ground-truth do
{gradients for E and Ft}
Lt
G ← wtLt

gt

end for
{Back-propagate all gradients with}
LG =

∑|T |
t=1 Lt

G

{Update the overall parameters}
end for

end for

2. Implementation Details
For the experiments on the cross-city setting with

Cityscapes and Cityscapes-depth datasets [2], we train the
networks for 120 epochs using 256 × 256 crops with a

batch size of 32. Since there are different numbers of an-
notated training images in each dataset (2975 in Cityscapes
and 20K in Cityscapes-depth), we iterate over all samples
in Cityscapes while randomly selecting the same number
of samples in Cityscapes-depth to extract the interleaving
mini-batches during training. For the experiments on the
cross-domain setting with the Cityscapes and Synscapes [5]
datasets, we train for 120 epochs using a larger crop size of
384×384 with a batch size of 24. While for the cross-dataset
experiments, the two remote sensing datasets, Potsdam and
Vaihingen [1], contain very high-resolution true orthophoto
(TOP) tiles with different sizes. In particular, the Potsdam
dataset consists of 38 TOP tiles of resolution 6000×6000.
Regarding the Vaihingen dataset, there are 33 image tiles,
each of which has an average of 2500×2000 pixels. As
such, we extract patches of size 512×512 from the raw large
images using a 50% overlapped sliding window along both
the rows and columns for training and testing. We then train
the network for 120 epochs using a crop size of 384× 384
and a batch size of 24. The same iteration scheme is adopted
for the last two settings as the one in the cross-city setting.

The Cityscapes dataset provides the disparity ground-
truth pre-computed by the SGM [3] algorithm, which may
contain invalid points. We then mask these points during
both the training and evaluating process. We also ignore the
left 5% and bottom 15% areas of the image where there are
noisy disparity values. As the Synscapes dataset provides
accurate depth ground-truth, we transform depth into inverse
depth to represent points with infinite distance as zero. For
the remote sensing datasets, we simply the normalize the
nDSM data to the range of [0,1]. We then randomly flip
and scale the image between [0.75, 1.5] and rotate the image
with a degree between [−10, 10] for the street-view datasets
and [−180, 180] for the top-view remote sensing datasets.
Finally we crop the image into the fixed size for training.

3. Model Analysis
Effect of task loss weights. We optimize our SemiMTL
model with a naive weighted summation of multiple loss
functions, and thus the choice of the loss weight for each task
is an important factor for the model. We explore the effect
of different task loss weights on our framework under the



Table 1. Sensitivity analysis of loss weights for depth. We evaluate our method with different loss weights for depth estimation task, which
measures the relative importance between segmentation and depth tasks.

Method
Segmentation Depth MTL

pAcc mIoU AbR RMSE δ1 δ2 δ3 ∆M(%)

0.01
JTL [4] 94.8 71.4 0.329 5.469 76.6 91.2 95.7 +9.4

SemiMTL 94.9 71.9 0.287 5.234 79.3 92.6 96.3 +11.5

0.001
JTL [4] 94.9 71.9 0.302 5.479 75.3 90.7 95.5 +9.7

SemiMTL 94.9 72.7 0.269 5.352 75.5 91.1 95.9 +11.2

Table 2. Sensitivity analysis of adversarial loss weights. We validate different weights to balance the importance between the supervised
and semi-supervised losses.

Method
Segmentation Depth MTL

pAcc mIoU AbR RMSE δ1 δ2 δ3 ∆M(%)

SemiMTL (S1) 95.5 71.9 0.280 5.271 78.4 92.2 96.3 +11.3
SemiMTL (S2) 95.7 73.3 0.308 5.220 79.0 92.4 96.1 +12.6
SemiMTL (S3) 95.4 72.1 0.309 5.370 77.2 91.1 95.6 +10.7

cross-city setting. Since there are two dense labeling tasks,
we directly set the weight for segmentation task as 1.0 and
change the depth weight to adjust their relative importance.
Table 1 shows that our proposed method performs favorably
against the JTL baseline with all weighting parameters. It
is worth noting that a smaller depth weight may decrease
the performance of depth task, while facilitating that of the
segmentation task. We choose the depth weight parameter
as 0.01 to obtain a better trade-off for the two tasks.

Effect of adversarial loss weights. During optimizing our
SemiMTL framework, another essential factor is to bal-
ance the weight between the supervised and semi-supervised
losses. In our framework, the semi-supervised loss is repre-
sented by the adversarial losses (Lintra and Linter) of the
predictions propagated from the discriminator network. We
investigate the weight parameters (λintra, λinter) with three
different sets: S1 = (0.001, 0.001), S2 = (0.001, 0.0001),
and S3 = (0.0001, 0.0001), where the first and second pa-
rameters denote the loss weights for predictions from labeled
and unlabeled datasets, respectively. Table 2 illustrates that
a too small or too large semi-supervised loss weight may not
facilitate the overall SemiMTL system significantly. We em-
pirically choose the S2 set of parameters in our experiments.

4. Qualitative Results

We present more qualitative results on the cross-city,
cross-dataset, and cross-domain settings for semantic seg-
mentation and depth/height estimation tasks, see Figure 1, 2,
and 3. We also provide additional examples to compare the
proposed SemiMTL scheme with the baseline methods and
demonstrate the effectiveness of our method on both tasks,
as shown in Figure 4.
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Figure 1. Qualitative results from the proposed SemiMTL method on the cross-city setting. The SemiMTL model is trained on the
Cityscapes and Cityscapes-depth datasets, and evaluated on the validation set of Cityscapes which provides the ground-truths for both tasks.



Figure 2. Qualitative results from the proposed SemiMTL method on the cross-dataset setting. We train the SemiMTL model with the
segmentation annotations from Potsdam and height labels from Vaihingen respectively. We then evaluate the model on their test sets where
we have the ground-truths for both tasks. The first and last three rows are the examples drawn from the Potsdam and Vaihingen, respectively.



Figure 3. Qualitative results from the proposed SemiMTL method on the cross-domain setting. The SemiMTL model is trained on the
Cityscapes and Synscapes datasets where the former and latter ones provide the segmentation and depth annotations respectively. We then
evaluate the model on the validation set of Cityscapes (upper five examples) and the test set of Synscapes (lower five examples) where we
can access to the ground-truths for both tasks.



Figure 4. Qualitative comparison for different methods. The upper and lower two examples are drawn from the Cityscapes and Synscapes
datasets respectively. The visual results show that compared with the baseline methods, the proposed SemiMTL method predicts more
accurately for segmentation, and estimates more sharply along boundaries and smoothly within regions for depth. The improvements are
highlighted with cyan and red rectangles for segmentation and depth tasks respectively.


