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1. Detailed Layer Disposal

In Tab. 4 we provide a detailed overview of our network

architecture which is based on ERFNet [26]. Let chans de-

note the number of feature maps per layer and size denote

the width and height of each feature map.

The network follows the design of an encoder-decoder

architecture that employs residual connections and factor-

ized convolutions to remain efficient. In addition, it retains

high accuracy on common benchmarks and outperforms a

variety of competing network architectures. We emphasize

that this network provides dense predictions. Thus, we se-

lect it as our backbone and adapt it to our task.

First, we feed the RGB input image into the encoder and

forward its output to two different decoders, which are la-

beled as (a) and (b) in Fig. 2 and Tab. 4. The first decoder (a)

predicts eight feature maps in its final output, see Tab. 4.

These include the offset maps ∆L and ∆P that enforce

pixels of individual crop leaves and plants to point into an

instance-specific region around the center of the instance

they belong to, see Sec. 3.2. In addition, this decoder pre-

dicts the feature maps ΘL, Λ1

L
, and Λ2

L
that we exploit to

compute the inverse covariance matrix Σ−1

Lk
of each crop

leaf, see Sec. 3.3. We employ the remaining three feature

maps ΘP , Λ1

P
, and Λ2

P
to compute the inverse covariance

matrix Σ−1

Pj
of each crop plant. The second decoder (b)

predicts two feature maps in its final output. We exploit the

predicted feature map SL to recover the instance centers of

crop leaves and SP to recover the instance centers of crop

plants, as described in Sec. 3.4.

2. Comparison of Score Maps

At inference, we recover the centers of crop leaves

and plants based on the predicted feature maps SL and

SP , respectively. The map SL contains high scores at

pixel locations xi where the associated spatial embedding

li = xi +∆li has a high confidence score under the Gaus-

sian in Eq. (1). This occurs if the embedding li is close to

the center of a crop leaf. Accordingly, the map SP has high

scores at pixel locations where the corresponding embed-

ding pi = li +∆pi has a high confidence score under the

Table 4: Detailed layer disposal of our proposed network.

Layer Type chans size

0 RGB Input Image 3 1024× 512

E
n

co
d

er

1 Downsampler Block [26] 16 512× 256

2 Downsampler Block 64 256× 128

3-7 5×Non-bt-1D [26] 64 256× 128

8 Downsampler Block 128 128× 64

9 Non-bt-1D (dilated 2) 128 128× 64

10 Non-bt-1D (dilated 4) 128 128× 64

11 Non-bt-1D (dilated 8) 128 128× 64

12 Non-bt-1D (dilated 16) 128 128× 64

13 Non-bt-1D (dilated 2) 128 128× 64

14 Non-bt-1D (dilated 4) 128 128× 64

15 Non-bt-1D (dilated 8) 128 128× 64

16 Non-bt-1D (dilated 16) 128 128× 64

(a
)

D
ec

o
d

er

17 (a) Deconvolution 64 256× 128

18-19 (a) 2×Non-bt-1D 64 256× 128

20 (a) Deconvolution 16 512× 256

21-22 (a) 2×Non-bt-1D 16 512× 256

23 (a) Deconvolution 8 1024× 512

(b
)

D
ec

o
d

er

17 (b) Deconvolution 64 256× 128

18-19 (b) 2×Non-bt-1D 64 256× 128

20 (b) Deconvolution 16 512× 256

21-22 (b) 2×Non-bt-1D 16 512× 256

23 (b) Deconvolution 2 1024× 512

Gaussian in Eq. (2), i.e., it is close to the center of a crop

plant. Thus, the appearance of these maps depends on our

network’s prediction for the offset maps ∆L and ∆P . In

Fig. 7 we show the predicted maps SL and SP in case we

train the network with or without the offsets ∆L and ∆P .

In the first case, almost all spatial embeddings li are

close to the center of their associated crop leaf. Thus, the

map SL contains a high score at each pixel location xi

which belongs to a crop leaf. The same holds for the em-

beddings pi and the predicted map SP .

In the second case, all spatial embeddings are

equal to their pixel location xi since we explicitly set



Figure 7: Comparison between the predicted maps SL and SP of

an input image (top) for different optimization procedures of our

network. In the first case (top), the network translates pixels that

belong to an instance towards their associated center and predicts

small clustering regions. In the second case (bottom), the network

predicts no offsets but adapts the clustering region to the shape and

orientation of an instance.

∆li = ∆pi = 0. Thus, the map SL contains high scores

only at pixel locations that are nearby the actual center of a

crop leaf. In contrast, we observe lower scores for all pixels

that belong to a crop leaf but are located at a certain dis-

tance from the corresponding crop leaf center. The same

effect holds for the map SP , which has high scores at pixel

locations that are close to the center of a crop plant.

However, we state that these cases reflect different op-

tions of our network to optimize the objectives in Eq. (3)

and Eq. (4) that result in different maps SL and SP .

First, the network can translate pixels towards their de-

sired instance centers and predict small clustering regions

around an object’s center to achieve high scores under the

Gaussian in Eq. (1) and Eq. (2). This results in maps SL

and SP that have a similar visual appearance, as shown in

the center of Fig. 7.

Second, the network can also predict minor offsets but

adapt the clustering regions represented by covariance ma-

trices to the shape and orientation of an object. With re-

gard to the objectives in Eq. (3) and Eq. (4) it is suffi-

cient to predict covariance matrices that achieve confidence

scores > 0.5 under the Gaussians in Eq. (1) and Eq. (2) for

all embeddings which belong to an instance. This results in

maps SL and SP where the scores decrease with increasing

distance to the instance center, as shown at the bottom of

Fig. 7. Here, both maps appear very differently.

Both previously described options are valid w.r.t. to the

objectives in Eq. (3) and Eq. (4). This emphasizes that we

need specific maps to recover the centers of crop leaves and

plants, respectively. Thus, a single map is not sufficient to

recover instance centers. In both cases, the map SL is ap-

propriate to recover instance centers of crop leaves, and SP

is well-suited to recover instance centers of crop plants.

3. Qualitative Results CVPPP LSC

We provide more qualitative results of our approach on

the popular CVPPP LSC in Fig. 8. We follow best practice

and use sequence A1 with the highest number of published

results. This sequence contains 128 labeled images for

training and 33 test images with a size of 530 px× 500 px

each. The task of this competition is to segment each leaf

of a single plant recorded in a laboratory environment. In

contrast, we explicitly designed our network to perform a si-

multaneous instance segmentation of crop leaves and plants

on images of real agricultural fields that contain an arbi-

trary number of plants. Thus, the LSC addresses a less com-

plex problem. In Fig. 8 we show that our approach achieves

an accurate leaf segmentation performance that outperforms

competing methods, see Tab. 3.

To the best of our knowledge, no publicly available

competition covers a simultaneous instance segmentation

of crop leaves and plants on agricultural fields as targeted

by our approach. Thus, we report the performance of our

method on the CVPPP LSC in order to present a quantita-

tive analysis with published result.

4. Baselines and Additional Qualitative Results

In Fig. 8 we provide more qualitative results of our

method on our dataset in comparison with two baselines.

We emphasize that our approach performs a simultaneous

instance segmentation of crop leaves and plants in a single

network, which associates each detected leaf with a spe-

cific crop plant. This is a challenging task, since the num-

ber of crops in the field as well as the number of leaves

per plant is highly variable. To the best of our knowl-

edge, there is no method which explicitly models a simulta-

neous instance segmentation of individual crop leaves and

plants on real agricultural fields. The method proposed by
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Figure 8: Qualitative results of our approach on the CVPPP LSC. We show the input images (top row) and the corresponding leaf instance

segmentation of our method (bottom row). We represent each leaf in a color-encoded fashion.
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Figure 9: Qualitative results of our approach on our dataset in comparison with two baselines. Note that we show a cropped and enhanced

input image for better visibility of crops and weeds.

Weyler et al. [32] targets a similiar objective but provides

only coarse bounding boxes for each plant and coarse key-

point locations for each leaf. Thus, we compare our method

to different approaches that achieve state-of-the-art results

for the task of instance segmentation, i.e., Mask R-CNN [8]

and Harmonic Embeddings [12]. The former approach

achieves high performance on a variety of benchmarks and

is still one of the most used methods for instance segmen-

tation. In contrast, the latter method is explicitly designed

to achieve high accuracy on biological images. However,

both methods do not allow to perform a simultaneous in-

stance segmentation of crop leaves and plants in a single

network. Thus we train two networks for each of the pro-

posed baselines. We train the first network only on instances

of crop leaves and the second network only on instances of

crop plants. Thus, each of the two networks is an expert for

the task of crop leaf instance segmentation or crop plant in-

stance segmentation. At inference, we apply each network

independently to the input data and report the results.


