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1. Robustness of the Synthetic Image Genera-
tion Workflow

RE-assisted hardware assurance is a complicated pro-
cess. It involves physical interaction with the sample mate-
rial which may induce more errors in addition to the imag-
ing modality based sources of noise. For instance, the sam-
ple maybe contaminated by dust particles which may hide
critical features in the IC during imaging. However, the
simplified simulation workflow, shown in Figure 1, only in-
cludes the imaging modality based sources of noise. Mod-
elling the entire RE process using such a simplified simu-
lation model may raise questions concerning the robustness
and generalizability of the workflow. To this end, a com-
prehensive list of sources of error inducing noise in the RE
process was compiled from existing literature and case stud-
ies.

Source of Error Relevant work
Beam Interaction [10, 15,5, 20, 24, 1, 25]
Radiation Damage [22]
Beam Drift [4, 3]
Residue [2]
Uneven delayering [8, 22]
Die warpage [17, 26]
Conduction [8, 16, 18, 11]
External contaminants [4, 9]
Stitching [13, 19, 28]
Vertical alignment [12]
Flicker Noise [27]
Oxidation [23]
Electromigration [6, 14]
Process variations [21]
Incorrect information [71

Table 1. Works describing the sources of errors in RE

The list is organized in Figure 2. The taxonomy of noise
sources is essential in understanding the RE process but
their influence and impact on the RE workflow can only be
classified by their nature of interaction with the process; ei-
ther predictable or random. The “imaging-related” sources
of error in the taxonomy incorporates the noise sources

from the imaging modality and the errors that result as a
direct consequence of physical interaction with the IC sam-
ple. The noise introduced in the RE workflow as a conse-
quence of the design practices and materials used in man-
ufacturing the IC is listed as “Foundry/Node technology-
specific” sources of error. Finally, the errors that occur due
to human interactions is listed under “human factors”. The
source literature discussing these noise sources also intro-
duce approaches to suppress it. For instance, conduction
in imaging-related sources of error can be prevented by de-
positing thin layers of conductive materials such as carbon
or platinum on the IC die surface [18, 11]. A detailed dis-
cussion on the individual noise sources, except for layout-
specific sources of errors, are foregone to avoid redundancy.
Layout-specific error sources, such as feature dimensions
and proximity, are a direct result of the layout synthesis and
so-called design rules. Complex geometry of structures can
only be imaged if they are within the resolution capability of
the imaging modality. Similarly, structures placed in close
proximity with each other may, also, not be resolved effec-
tively. In simpler terms, these features may be truncated by
the SEM unless a small Field-of-View or high magnification
is used. Works discussing each source of error and the ap-
proach for resolving it is shown in Table 1. Comprehensive
model validation is also provided in the cited works. The
sources of errors that cannot be suppressed or prevented are
included as part of the synthetic image generation workflow
to populate the dataset.

Another concern can be raised on the limited selection
of design layout used for generating the dataset. The ba-
sic building blocks of any digital design are the standard
cells. These represent basic logic gates, more complex gates
(e.g., full adders), and registers, and are repeated through-
out the design. Popular commercial IC design tools and an
open-source standard cell library (both licensed from Syn-
opsys for generating the dataset) are used to synthesize and
place-and-route the Advanced Encryption Standards (AES)
design. The tools are guided by the design rules specified in
the 90nm and 32/28nm process design kits (PDKs) respec-
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Figure 1. Workflow for generating a synthetic SEM image for the REFICS dataset.
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Figure 2. Taxonomy of various noise sources affecting image quality and reliability in the RE workflow

tively. Since the same design rules and standard cells would
be used by the tools for any design, including a contempo-
rary processor, the influence of the limited design layouts on
the viability of the dataset will be minimal. To further ad-
dress this concern, a tool is provided along with the dataset
to generate SEM images from a new design layout.

2. Experimental Setup for Model Validation

A smart card IC was deprocessed to satisfy the real SEM
image data requirement for the experiment. A 250um win-
dow was opened on the flip-side of the IC using a Focused
Ion Beam and images were acquired using a 25um Field-

of-View and dwelling times of 10 and 3.2usec/pixel. With
a fixed resolution of 1024 x1024 pixels, 25 SEM images
of the diffusion layer were captured for each dwelling time
setting. These images were hand-labelled as pixels belong-
ing to either the silicon substrate or the doped region. For
the Monte Carlo simulation counterpart in the experiment,
the imaging parameters used were the the shot noise (Agp0t)
value for the primary scanning beam, and, the expected
mean (fty,q¢) and standard deviation (o, ) for the pixel in-
tensity response from the material under study. For obtain-
ing a single pixel value, using the beam interaction model
i.e. the scanning beam (PE) and the corresponding response
(SE), from the material in the SEM is shown in Equations



1 and 2. The simulation generated 64,000 pixels for every
possible combination of the parameters listed in the paper.
The comparison between the real and synthetic SEM image
can now be performed.

PE = Poisson(Ashot) (1)
SE = Gaussian(pmaet £k X 2.5 X Omat, Omat)
2
PFE
where, k =

max(PE) — min(PE)

In image processing and computer vision, the similarity
between images are assessed using two distinct character-
istics of the image: the image histogram and texture. In
both cases, the data preparation follows the same process.
Initially, a hand-labelled ground-truth image is taken and
the labelled pixels are filled in by sampling the pixel val-
ues generated by the Monte Carlo simulation to produce
a synthetic image representing the particular set of image
simulation parameters. This is repeated for every possible
combination of simulation parameters. The mean pixel in-
tensity values for the silicon substrate and the doped region
were used to offset the histogram for the simulated images.
For instance, silicon substrate and the doped region had a
mean pixel intensity value of 60 and 161 respectively in
our real SEM image data. For assessing the similarity in
image histogram, the image histogram (pixel intensity fre-
quency distribution) of the real SEM image and the corre-
sponding synthetic SEM images representing every combi-
nation of simulation parameters are taken. The similarity
between image histograms were assessed using the Jensen-
Shannon distance. A distance value of zero indicates that
both the histograms are the same. Similarly, for assess-
ing the similarity in image texture, the real SEM images
and the synthetic SEM images were decomposed using the
Fourier transform. The magnitude spectrum for both im-
ages were rearranged into vectors and the similarity was as-
sessed using the cosine distance between the two vectors.
Both the experiments produced identical results. Similar-
ity in histogram of the images suggest that the distribution
from which the pixels are sampled are identical. Further,
with the Fourier domain representation of the images being
identical, the relationship of a pixel with its neighbouring
pixels (i.e. the texture) is preserved as well. These obser-
vations, along with the model validations reported in liter-
ature, suggests that the real and synthetic SEM images are
very similar.

The real SEM images of the IC, used for validating the
model, will not be a part of the dataset due to intellectual
property limitations. However, in a planned future expan-
sion of the dataset, SEM images extracted from a real con-
temporary IC designed in-house will be provided.
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Figure 3. Imperfections introduced by the segmentation algo-
rithms. Tiny hairline connection exists between the red compo-
nents highlighted on the left leading to a false short circuit (under-
segmentation). Original layout is shown on the right for compari-
son.

3. Metrics

There are several metrics used in RE-assisted hardware
assurance. SSIM, IoU and MSE are the most common.
SSIM captures the shape information about the structures
in the image. MSE looks at pixel-level accuracy. How-
ever, they do not contain any contextual information. For
instance, in a 250x250 segmented image, a hairline seg-
mentation error, shown in Figure 3, may only span five pix-
els and MSE would deem this as a near perfect segmenta-
tion of the SEM image. However, this error would change
the functionality of the entire IC. Similarly, IoU looks at the
placement of each structure in the image. These metrics do
not capture the intricacies of RE. Consequently, two addi-
tional custom metrics were added to the evaluation criteria.

Connected component (CC) analysis is a common tech-
nique in image analysis. This measure looks at the connec-
tivity between every pixel to its neighbours. If a segmenta-
tion error exists, unintentionally connecting or disconnect-
ing structures in the image (a hairline segmentation error
connecting two metal traces for instance), it can be captured
using the CC measure. For CC, a 4-connected component
analysis is performed. In 4-connected components analy-
sis, two pixels in the image are said to be connected if an
odd-sized kernel placed on one of the pixels is horizontally
or vertically adjacent to the other pixel, i.e., is in its neigh-
bourhood. The connectivity is analyzed for ever pixel in
the image and used to determine if any two structures in
the segmented image is connected. The same process is
repeated for the ground-truth image as well. The ratio of
false open-circuit structures to the total number of struc-
tures in the image represents over-segmentation/false open-
circuit (CC-OS). Similarly, the ratio of false short-circuit
structures to the total number of structures in the image rep-
resents under-segmentation/false short-circuit (CC-US). In
a perfectly segmented image, both of these scores will be
ZEero.

4. Dataset Examples

Figure 4 presents a few samples from the REFICS
dataset. The dataset contains images for two node tech-



nologies and four layers. The segmented ground truth, the
layout mask that including the stitching error, and raw SEM
images are provided.

Node Technology: 32nm

Metal Layer Doping Layer Polysilicon Layer

Segmented
Ground Truth

Layout Level
Mask

Raw SEM
Images

Node Technology: 90nm
Doping Layer

Metal Layer Polysilicon Layer

Segmented
Ground Truth

Layout Level
Mask

Raw SEM
Images

Figure 4. Samples from REFICS dataset.

5. Output Examples from End-to-end Net-
works

Figure 5 presents the example output from four end-to-
end deep neural networks. CBDNet restores small features
and sharp edges better than DnCNN. Pix2pix and cycle-
GAN tend to translate the image style to have sharp edges,
but they miss pixels on small features.

Figure 6 presents a few imperfect cases generated from
networks. The low contrast case shown in Figure 6(a) is the
most challenging, where the patterns in the raw SEM image
is barely perceptible. This is most likely to happen in the
polysilicon layer. Figure 6(b) presents the performance of
networks on restoring stitching errors. The observed incon-

Example Output of 90nm Doping Layer
Output

DnCNN

CBDNet

Pix2pix

CycleGAN

Figure 5. Example output for the same testing image.

sistency may affect particular applications. For example, it
may not affect Trojan detection methods that rely on rep-
resentative features but it will affect that rely on template
matching.

On a side note, the algorithms, including deep learning
models, used for bench-marking the dataset use the param-
eters used in the source works. The intention of the bench-
marks is to provide a baseline for building better vision al-
gorithms and insights into the problem rather than optimiz-
ing the performance for each algorithm.
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