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In this supplementary material, we provide more details
regarding training, ablation study on the network architec-
ture, experimental setup and evaluation. We also extend
figures from the main paper with more qualitative compar-
isons.

In this paper and supplementary material, all computa-
tion time are recorded by NVIDIA® GTX 1080Ti GPU, us-
ing PyTorch 1.9.0 version. The source code is available at
https://github.com/tak-wong/Deep-Optimization-Prior.

1. Training of Deep Optimization Prior

Algorithm 1 Training procedure of deep optimization prior

Input: Data tensor G, forward model A, z-direction sam-
pling grid z⃗, iteration M

1: function AUTOENCODER(G,A, z⃗,M )
2: N , θ = NN(); ▷ initialize a neural network model
3: for i = 1 to M do
4: u = N (G; θ); ▷ network prediction
5: Model = A(u|z⃗); ▷ physical model
6: Loss = L(Model, G); ▷ loss function
7: θ = N .train(Loss); ▷ backpropagation
8: end for
9: return θ, u

10: end function

In contrast to the classical training-then-prediction ap-
proach by per-pixel autoencoder, we propose to utilize a
deep optimization prior training approach which trains a
neural network as an optimizer. The pseudo-code of the
unsupervised deep prior training procedure of the proposed
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method is shown in Algorithm 1, where the inputs are the
measurement data tensor G, the physical forward model A,
depth z-direction sampling vector z⃗, the number of itera-
tions (i.e. epochs) M . Note that unlike the random sampled
per-pixel approach in [8], the network N is trained, i.e. op-
timized, to predict parameters u at all lateral pixel (x, y)
based on the entire 4-D tensor G.

2. Ablation Study on the Network Architecture

The introduction of concatenating skip connections in
U-net that often exceed the number of channels as well
as the additional intermediate bottleneck in the encoder
appear unintuitive from a supervised learning perspec-
tive. Thus, let us investigate their effect by consider-
ing the standard U-net (Unet), a U-net with large skip-
connections by a standard encoder (Unet+Skip), a U-net
with standard skip-connection but the encoder we proposed
(Unet+Bottleneck), and our proposed U-net architecture.
Table 1 shows their optimal performance on the real mea-
surement MetalPCB dataset and on the synthetic datasets
SynthUSAF and SynthObj at various noise level respec-
tively. All network architecture are trained for 4 learning
rates using the real measurement MetalPCB dataset respec-
tively. This optimal learning rate is applied for all datasets.

As we can see, the large skip connection Unet
(Unet+Skip) and the proposed Unet architectures achieves
the lowest loss for almost all datasets. However, the vari-
ance of loss by Unet+Skip is significantly higher than
the proposed Unet for some datasets (e.g. MetalPCB,
SynthUSAF at 0dB, SynthObj at −10dB). It indicates that
the proposed Unet architecture is the most robust architec-
ture among these 4 network structures.



Noise Level
(PSNR)

Normalized Loss (×10−6)
Network Unet Unet+Skip Unet+Bottle Proposed

MetalPCB
measured Optimal LR 0.1 0.1 0.01 0.01

measured
Min. 58.87 56.55 60.16 56.78
Mean 62.95 57.63 63.81 57.56
Max. 69.33 61.20 67.04 58.25

MetalPCB+AWGN

-20dB
Min. 32365.39 30851.79 32064.11 30797.56
Mean 47598.25 35825.00 32121.31 30871.59
Max. 58154.44 54943.34 32196.63 30918.26

-10dB
Min. 3303.06 3264.36 3311.45 3267.41
Mean 3362.96 8401.39 3369.38 3271.89
Max. 3465.76 28943.87 3431.25 3278.23

0dB
Min. 422.88 395.64 415.69 397.34
Mean 5552.23 5523.62 423.50 400.09
Max. 26033.73 26032.38 428.74 403.63

10dB
Min. 117.14 109.12 118.03 109.69
Mean 5241.37 109.93 121.15 111.22
Max. 25729.74 110.91 124.82 113.76

SynthUSAF+AWGN

-20dB
Min. 31145.93 29799.38 30948.27 29746.34
Mean 37539.14 44513.64 31022.22 29802.03
Max. 62445.44 66699.85 31080.66 29819.02

-10dB
Min. 3216.02 3020.85 3196.11 3042.54
Mean 10928.21 3031.51 10624.38 3058.49
Max. 41705.13 3050.10 40263.39 3080.95

0dB
Min. 343.63 313.34 342.51 315.10
Mean 345.74 517.48 347.60 317.82
Max. 349.03 1324.67 354.28 320.96

10dB
Min. 43.01 35.99 54.54 38.18
Mean 46.56 38.94 60.47 40.82
Max. 48.75 41.94 73.15 45.26

SynthObj+AWGN

-20dB
Min. 32059.66 29860.43 31813.17 29668.97
Mean 38232.22 30048.30 31947.22 29729.65
Max. 60389.10 30240.42 32187.62 29823.52

-10dB
Min. 3422.17 3095.52 3535.84 3088.49
Mean 9481.55 10106.76 3633.48 3276.31
Max. 33048.26 30638.85 3696.07 3343.63

0dB
Min. 406.96 323.21 387.25 323.11
Mean 612.38 381.05 460.56 387.28
Max. 885.45 571.84 673.18 588.90

10dB
Min. 75.92 40.02 90.64 48.85
Mean 98.85 101.67 100.37 106.93
Max. 112.52 317.85 121.63 289.59

Table 1: Comparison of normalized ℓ2-squared loss by stan-
dard U-net architecture (Unet), standard encoder with large
skip-connection (Unet+Skip), proposed encoder with stan-
dard skip-connection (Unet+Bottleneck) to the proposed U-
net architecture. The best optimizers (lower is better) are
highlighted.

3. Experimental Setup

In this section, technical details of experiment setup are
described. Fig. 1a and Fig. 1b shows 3D objects that gen-
erate synthetic datasets SynthUSAF and SynthObj respec-
tively.

(a) SynthUSAF (b) SynthObj

Figure 1: Synthetic dataset is generated by 3D objects from
a USAF resolution target and an engine bearing part from
MVTec ITODD dataset [2]

3.1. Choice of Optimizer

Commonly used optimization methods for THz inverse
problem can be categorised as:

• Hessian based methods (second order gradient), which
include Levenberg Marquardt [6], Trust Region Algo-
rithm [1], and LBFGS [4].

• Gradient descent methods (first order gradient), which
include gradient descent, and steepest gradient de-
scent.

We select AdamW [5] method as a first order gradient de-
scent method, and LBFGS as a second order method for
comparison.

We optimize the deep optimization prior loss functions
using the AdamW optimizer as implemented in PyTorch
with GPU acceleration. To ensure a fair comparison we
phrase the classical optimization as the minimization of a
”network” that does not receive any input node, but instead
only outputs the learnable parameters u to avoid any differ-
ences in implementation. As a second baseline, we addi-
tionally evaluate the LBFGS [4] optimizer for the classical
approach to exclude an systematic advantage of the specific
AdamW method for optimization problems with a deeply
nested structure. All formulations and optimizers are run
for 1200 iterations (i.e. full-batch epochs in machine learn-
ing terminology). Moreover, we compare to the per-pixel
autoencoder [8]. In order to have a fair comparison, we
changed the optimization algorithm of the per-pixel auto-
encoder from Adam in [8] to AdamW.

To project parameters onto the non-negative orthant,
the network predicted parameters N (G; θ) are projected
to [umin, umax] using sigmoid function. Similarly, for
LBFGS and AdamW optimizers, we project parameters u
to the non-negative orthant, except that the linear bounded



function is adopted instead of sigmoid function:

ûx,y = min (max(umin, ux,y), umax) (1)

This is because by empirical comparison, the linear
bounded projection function performs better than sigmoid
function in terms of the minimized loss value.

However, because of the non-differentiable zero-point,
the projection of LBFGS and AdamW optimizers is imple-
mented after the gradient descent update for each iteration.

3.2. Initialization

Descent-based nonconvex optimization methods depend
on their respective starting point, commonly known as their
initialization. In our numerical experiments we evaluate two
types of initializations for the classical approach of mini-
mizing loss function L directly: The first is to choose every
parameter u at every pixel from a uniform random distribu-
tion over [umin, umax] where umin and umax are estimates
of the reasonable minimum and maximum values these pa-
rameters should attain. As we will see in Section 4, such
an initialization is too crude for classical optimization to
yield reasonable results. Secondly, we try to exploit phys-
ical knowledge about each application in order to provide
reasonably accurate initial guesses for the parameters at
each pixel. In this paper, the initialization method in [7] is
adopted as physics based initialization, and a random para-
meter initialization is tested for comparison.

Since classical approaches greatly benefit from a good
initialization, we tried to benefit from good initial guesses
for our network-based reparametrizations: by adding the
initial parameters to the network prediction. However, this
approach did not improve our numerical results in compari-
son to the usual random initialization of network parameters
which is why we discarded this approach.

For the network initialization, we adopted initialization
method from [3] for per-pixel autoencoder and the proposed
method. In order to verify the robustness to random initial-
ization, each setting that is related to random initialization
of the model parameters or to random initialization of the
network parameters is run for 5 times. Note that we run
this sanity check for per-pixel autoencoder [8] to verify its
robustness.

3.3. Hyperparameter Optimization

In THz imaging, the numerical value represents a spe-
cific physical meaning individually, e.g. THz time signal
data represents reflective power at individual frequency and
µ represents the physical depth position in terms of milli-
meters. In order to respect these physical meanings, we
retain the original data scale for training and optimization.
However, the large variety of numeric range leads to a di-
verging optimal hyperparameter for network training and
optimizer.

To have a fair comparison, we optimize the hyperparam-
eters via a grid search for 4 learning rates from 10−3 to
100, i.e. all optimizers and networks are trained and opti-
mized for 4 different learning rates and for the measure-
ment dataset MetalPCB, synthetic datasets (SynthUSAF and
SynthObj) at 0dB PSNR noise level respectively as a refer-
ence optimal learning rate.

For the regularization coefficients λ, we empirically
maximize the coefficients as long as no blurring of the para-
meter images based on visual inspection for all optimizers
(LBFGS, AdamW and the proposed method) occurs for the
shot noise model.

4. Evaluation on loss

Noise
Level

(PSNR)

Normalized Loss (×10−6)
Optimizer PPAE LBFGS AdamW Proposed

Initialization Random Physics Random Physics Random Random
MetalPCB

measured Optimal LR 0.001 0.01 0.1 0.001 0.01 0.01

measured
Min. 56.89 218.02 15008.87 61.32 12665.03 56.78
Mean 3372.63 218.02 15465.89 61.32 12677.52 57.56
Max. 16615.59 218.02 15904.82 61.32 12688.49 58.25

MetalPCB+AWGN

-20dB
Min. 30800.43 39766.81 73667.70 36100.08 49546.92 30797.56
Mean 34927.94 39766.81 105352.48 36100.08 49608.79 30871.59
Max. 51007.51 39766.81 126876.18 36100.08 49643.10 30918.26

-10dB
Min. 3217.44 10488.53 59122.06 7380.64 21559.17 3267.41
Mean 3232.18 10488.53 85814.26 7380.64 21591.09 3271.89
Max. 3252.32 10488.53 107167.15 7380.64 21636.72 3278.23

0dB
Min. 395.70 1967.64 60312.11 965.00 18182.68 397.34
Mean 408.61 1967.64 63289.90 965.00 18226.71 400.09
Max. 436.22 1967.64 66334.08 965.00 18247.48 403.63

10dB
Min. 108.96 240.86 22642.91 135.92 17422.87 109.69
Mean 112.16 240.86 27453.51 135.92 17439.26 111.22
Max. 114.37 240.86 32264.10 135.92 17464.49 113.76

Table 2: Comparison of ℓ2-squared loss using MetalPCB
and MetalPCB+AWGN datasets by optimizers per-pixel
autoencoder, LBFGS and AdamW to the proposed method.
All optimizers are tested for 4 learning rate individually us-
ing MetalPCB dataset, and the corresponding optimal learn-
ing rates are shown in the first row. Then, this optimal learn-
ing rate is applied for different noise level. Note that the
ℓ2-squared loss is normalized by the signal power. The best
optimizers (lower is better) are highlighted.

Table 2 shows ℓ2-squared loss using MetalPCB and
MetalPCB+AWGN datasets by optimizers per-pixel auto-
encoder, LBFGS and AdamW to the proposed method.

Table 3 shows ℓ2-squared loss using SynthUSAF and
SynthObj datasets at noise level −20dB to 10dB AWGN
by optimizers per-pixel autoencoder, LBFGS, AdamW and
the proposed method.

Table 4 shows loss with regularization using MetalPCB,
SynthUSAF and SynthObj datasets at 0dB AWGN and 10%
shot noise respectively.
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Figure 2: Comparison of RMSE of THz model parameters by optimizers per-pixel autoencoder, LBFGS and AdamW to the
proposed method method using dataset SynthUSAF+AWGN at noise level from −20 to 10dB AWGN. Bars and whiskers
indicate minimum, median and maximum RMSE among 5 runs for each optimizer respectively.

5. Evaluation on Parameter Accuracy

Numerical comparison Fig, 2 plots the RMSE of model
parameters ê, µ, σ and ϕ estimated by per-pixel auto-
encoder, LBFGS, AdamW and the proposed method.

Fig, 3 plots the RMSE of model parameters ê, µ, σ and
ϕ estimated by per-pixel autoencoder, LBFGS, AdamW and
the proposed method.

Qualitative Comparison Fig. 4, 5, 6 and 7 show the cor-
responding model parameter images ê (top row), µ, σ and

ϕ (bottom row) of ground truth (first column) and estima-
tion by per-pixel autoencoder, AdamW and the proposed
method (last column).

Fig. 4 shows the model parameter images using
SynthUSAF dataset with AWGN noise model at 0dB noise
level, where the images are selected by median RMSE (me-
dian quality run) individually.

Fig. 5 shows the model parameter images using
SynthObj dataset with AWGN noise model at 0dB noise
level, where the images are selected by the highest RMSE
(worst quality run) individually.
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Figure 3: Comparison of RMSE of THz model parameters by optimizers per-pixel autoencoder, LBFGS and AdamW to
the proposed method method using dataset SynthObj+AWGN at noise level from −20 to 10dB PSNR AWGN. LBFGS and
AdamW are initialized by physics based initialization in Sec. 3. Bars and whiskers indicate minimum, median and maximum
RMSE among 5 runs for each optimizer respectively.

Fig. 6 shows the model parameter images using
SynthUSAF dataset with shot noise model at 0dB noise
level, where the images are selected by median RMSE (me-
dian quality run) individually.

Fig. 7 shows the model parameter images using
SynthObj dataset with shot noise model at 0dB noise level,
where the images are selected by median RMSE (median
quality run) individually.
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dreas Kolb, and Michael Möller. Training auto-encoder-based

Noise
Level

(PSNR)

Normalized Loss ×10−6

Optimizer LBFGS AdamW Proposd
Initialization Physics Physics Random

MetalPCB+ShotNoise

0dB

Learning Rate 1 0.1 0.01
Min. 2034.9 1670.4 941.6
Mean 2034.9 1670.4 967.3
Max. 2034.9 1670.4 980.8

SynthUSAF+ShotNoise

0dB

Learning Rate 1 0.1 0.01
Min. 10953.1 5036.5 4819.6
Mean 10953.1 5036.5 4831.2
Max. 10953.1 5036.5 4842.9

SynthObj+ShotNoise

0dB

Learning Rate 1 0.1 0.01
Min. 7771.8 4329.7 4253.8
Mean 7771.8 4329.7 4271.7
Max 7771.8 4329.7 4289.1

Table 4: Comparison of loss with regularization us-
ing MetalPCB+ShotNoise, SynthUSAF+ShotNoise and
SynthObj+ShotNoise datasets by optimizers, LBFGS
and AdamW to the proposed method. The learn-
ing rate is selected based on optimal learning rate of
MetalPCB+ShotNoise using 0dB PSNR noise level. Note
that the loss is normalized by the signal power. The best
optimizers (lower is better) are highlighted.

optimizers for terahertz image reconstruction. In German
Conference on Pattern Recognition, pages 93–106. Springer,
2019.



Ground truth
Per-pixel

Autoencoder AdamW Proposed method

Figure 4: Comparison of model parameters ê (first row), µ (second row), σ (third row), cos(ϕ) (fourth row) and , sin(ϕ) (last
row) by ground truth, per-pixel autoencoder, AdamW and the proposed method using dataset SynthUSAF+AWGN at 0dB
PSNR. All images are selected by the median RMSE (median quality run) among 5 runs respectively.
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Figure 5: Comparison of model parameters ê (first row), µ (second row), σ (third row), cos(ϕ) (fourth row) and , sin(ϕ)
(last row) by ground truth, per-pixel autoencoder, AdamW and the proposed method using dataset SynthObj+AWGN at 0dB
PSNR. All images are selected by the maximum RMSE among 5 runs respectively (worst quality run).



Ground truth LBFGS AdamW Proposed method

Figure 6: Comparison of model parameters ê (first row), µ (second row), σ (third row), cos(ϕ) (fourth row) and , sin(ϕ) (last
row) by ground truth, LBFGS, AdamW and the proposed method using dataset SynthUSAF+ShotNoise at 0dB PSNR. All
images are selected by the median RMSE (median quality run) among 5 runs respectively.



Ground truth LBFGS AdamW Proposed method

Figure 7: Comparison of model parameters ê (first row), µ (second row), σ (third row), cos(ϕ) (fourth row) and , sin(ϕ)
(last row) by ground truth, LBFGS, AdamW and the proposed method using dataset SynthObj+ShotNoise at 0dB PSNR. All
images are selected by the median RMSE (median quality run) among 5 runs respectively.


