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1. Implementation and Evaluation Details

In this paper, we adopt two evaluation protocols to eval-
uate our method. The first evaluation protocol is adopted
in many previous metric learning papers [1, 6, 9, 12] where
each dataset is split into a training set (first half of classes)
and a testing set (second half of classes) and best results on
the testing set are reported; The second evaluation protocol
was recently proposed in [10] featuring a more standard-
ized and fairer evaluation procedure. Based on the evalu-
ation protocol, the implementation (i.e., hyper-parameters
selection) is slightly different. Note that like other methods
(e.g., Proxy Anchor [15]) embeddings and proxies are L2
normalized in our method. All code is implemented using
PyTorch [11].

Under the first evaluation protocol, we test our hierarchi-
cal proxy-based loss (HPL) with two backbone networks—
ResNet-50 [4] and BN-Inception [5] (see main paper for
results with ResNet-50 and Sec. 2.1 for results with BN-
Inception). Following [6], we append a max pooling layer
in parallel with an average pooling layer to the penulti-
mate layer of the backbone network. The outputs from
the max pooling layer and the average pooling layer are
added and then passed through a embedding layer (i.e.,
fully-connected layer) which projects the network output
to a desired embedding space. The embeddings are 512-
dimensional and L2 normalized before computing the loss,
and during inference. Both backbone networks are pre-
trained on ImageNet [2] for the classification task. The
batch size is set to 128 during training. Each model is
trained for 30 epochs with learning rate 10~* using the
AdamW optimizer [7]. We train the baseline models with
both Proxy-NCA loss and Proxy Anchor loss by following
the standard hyper-parameters settings in [9] and [6], re-
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spectively. Namely, the scaling factor and margin for Proxy
Anchor loss is set as 32 and 0.1, respectively. For our HPL
loss, the same hyper-parameters are used across all levels of
proxies.

The second evaluation protocol [10] splits each dataset
into a trainval set (first half of classes) and a testing set (sec-
ond half of classes) as the first evaluation protocol. How-
ever, to mitigate the effect of hyper-parameter selections
in different methods, the trainval set is further split into
four equal-sized partitions for cross validation. Particularly,
three partitions are used as the training set and the remain-
ing partition is used as the validation set. Hyper-parameters
are selected by optimizing the average validation perfor-
mance (MAP@R) of four leave-one-out experiments. This
hyper-parameter optimization is done by running M itera-
tions of Bayesian Optimization (M = 50 for the CUB and
Cars-196 datasets and M = 10 for the SOP dataset due to
its high complexity). The hyper-parameters to be optimized
in HPL include the learning rate of the proxies; the num-
ber of coarse proxies; the update frequency of the coarse
proxies; and scaling factors and margins (if applicable) for
each proxy level. The model parameters are trained using
RMSprop with learning rate 10~ and batch size 128. The
training terminates when the validation accuracy plateaus.
We refer the reader to [10] for further details of the evalua-
tion protocol.

2. Additional Experimental Results
2.1. Full Results and Further Discussion

In this section, we present the full experimental results
of Tab. 4 and Tab. 5 in the main paper which was par-
tially presented due to the page limit. Table 1-2 and Ta-
ble 3-4 present the full results of Tab. 4 and Tab. 5 in the
main paper, respectively. One can see from Table 1 and
Table 2 that our proposed HPL outperforms the baselines
in all Recall@ K. This further demonstrates the effective-
ness of our HPL losses. We observe consistent improve-
ment over the standard proxy-based losses across different
datasets (i.e., In-Shop, SOP and iNaturalist). Moreover, the
results in Table 2 also show that our HPL surpasses several



In-Shop
R@1 R@10 R@20 R@30 R@40 R@50
Proxy-NCA 8721 96.57 97.63 98.12 98.34  98.49
HPL-NCA 88.70 96.83 97.97 9838 98.61 98.79
Proxy Anchor | 89.85 97.14 9794 98.33 98.52 98.73
HPL-PA 9246 9797 98.57 98.92 99.11 99.18

Table 1. Recall@ K (%) on the In-Shop dataset. ResNet-50 is used as the backbone and we set | P1| = 500.

SOP
R@]1 R@10 R@100 R@1000
HTL* 74.8 - - -
D&C* 75.9 - - -
MIC* 77.2 - - -
DiVA* 79.6 - - -
Proxy-NCA 776  89.3 94.6 97.7
HPL-NCA 80.1 911 96.1 98.6
Proxy Anchor | 79.4  90.4 95.7 98.5
HPL-PA 80.0 911 96.3 98.8

Table 2. Recall@ K (%) on the SOP dataset. ResNet-50 is used
as the backbone and we set | P1| = 500 for HPL-NCA and HPL-
PA. * indicates that the results are directly taken from [8].

similar methods which either try to utilize the hierarchical
data structure or model class-shared information including
HTL[3], D&C[14], MIC [13] and DiVA [8] (a more detailed
description of these methods can be found in Sec. 2 of the
main paper).

In addition, we include additional results when |P;| =
500 for the SOP dataset Table 3. One can see from Table 3
and Table 4 that both HPL-NCA and HPL-NCA-GT (i.e.,
HPL-NCA with ground-truth hierarchy) outperform Proxy-
NCA, and surprisingly, HPL-NCA surpasses HPL-NCA-
GT even when given the same number of coarse proxies.
This shows that the hierarchy of categories learned by our
methods via online clustering performs better than directly
using the human-curated hierarchy of categories in terms of
image retrieval accuracy. We think this might be caused by
the fact that the human-curated category hierarchy may not
fully reflect the visual similarity among classes, whereas,
our method automatically learns the hierarchy based on vi-
sual similarity between classes, making it more favorable
for metric learning. In the iNaturalist dataset, the com-
position of a genus (i.e., coarse classes) is not fully de-
termined by the appearance similarity among species (i.e.,
fine classes), and the species within the same genus can
look very different (e.g., a fennec fox and a arctic fox in
Fig. 1). Therefore, directly using the human-curated hier-
archy could make the class-shared signals weak and noisy.
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Figure 1. Examples of the fennec fox (left) and the arctic fox
(right) in the iNaturalist Dataset.
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Figure 2. Impact of the updating frequency of coarse proxy.
We train the models with HPL-NCA loss and report the Recall@1
on the Cars-196 dataset of models that are trained with different
values of the hyperparameter 7". Red dot represents the traditional
Proxy-NCA.

In contrast, our method groups the species based on their
visual similarities (i.e., proxies) in an unsupervised manner.
This makes the commonalities among species stronger and
easier to capture using the loss on the coarse proxies.

In Fig. 2, we further evaluate the impact of the hyper-



SOP
|Pi| | R@l R@l0 R@100 R@1000
Proxy-NCA - 77.63  89.29  94.58 97.67
HPL-NCA-GT | 12 | 78.69 90.44  95.72 98.47
HPL-NCA 12 | 7933  90.71 95.63 98.35
HPL-NCA 100 | 79.83 91.06  96.07 98.63
HPL-NCA 500 | 80.13 91.07 96.11 98.62

Table 3. Learned hierarchy vs human-curated hierarchy on SOP dataset. HPL-NCA-GT denotes PL-NCA with ground-truth class

hierarchy.

iNaturalist
|P1| | R@1 R@2 R@4 R@8
Proxy-NCA - 51.32 62.56 72.53 80.80
HPL-NCA-GT | 48 51.63 63.00 72.77 81.12
HPL-NCA 48 51.95 63.18 73.04 81.42
HPL-NCA 500 | 52.26 63.53 73.47 81.62

Table 4. Learned hierarchy vs human-curated hierarchy on iNaturalist dataset. HPL-NCA-GT denotes PL-NCA with ground-truth

class hierarchy.

parameter T—the updating frequency of coarse proxy T
in our method. In particular, we evaluate HPL-NCA with
10 coarse proxies using different coarse proxies update fre-
quencies T' € {10, 20,40, 80} on Cars-196. The Recall@1
are 84.7%, 85.5%, 85.0% and 84.9%, respectively. As a
baseline, traditional Proxy-NCA has a Recall@1 of 82.8%
in our experiments. This shows that our method is robust to
different choices of 1" and outperforms the baseline consis-
tently.

2.2. Qualitative Results

Fig. 3 showcases some image retrieval results of the
models trained with our HPL-NCA loss and standard
Proxy-NCA loss. One can see that the quality of the re-
trieval results returned by our model is better than that of
the model trained with standard Proxy-NCA loss. Notice-
ably, our top-4 matches all share the same categories as
the queries, while standard Proxy-NCA model sometimes
returns out-of-categories matches despite that the matches
sharing some similarities as the query images. This demon-
strates the effectiveness of having a hierarchical structure in
the proxies where features shared among similar classes can
be learned.
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Figure 3. Additional qualitative results on SOP and Cars-196. We present the query images on the leftmost, and the top-4 matches on the
right. Odd rows are the results of our HPL-NCA loss; even rows are the results from the Proxy-NCA loss. Red box indicates incorrect
matches.



