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1. Additional Implementation Details

Our S2FGAN has four key components: a Encoder (Im-
age Latent Encoder E;, Sketch Latent Encoder E;), At-
tribute Mapping Network M, Style Aware Decoder D and
a Discriminator F. Our sketch-to-image translation with
attribute editing relies on encoding the sketch into latent
code, and having a superior Style Aware Decoder D and
a Discriminator F' are essential for our work. Thus, we im-
plement our decoder and discriminator backbone based on
the recommendation of StyleGAN [6]. Note, we work on
the W space of StyleGAN instead of W™ space because
we target controllable sketch-to-image translation instead of
inverting the image to the latent code. There are several mi-
nor differences in our decoder and discriminator compared
with the original StyleGAN implementation [6]. For the de-
coder, the PixelNorm, Mapping Network, and Noise Layer
are removed. For the discriminator, we remove the mini-
batch standard deviation layer. And, the same linear lay-
ers architectures (in the discriminator) are used to produce
attribute classification for S2F-DEC. Here we provide the
details of Encoders and Attribute Mapping Networks.

Notions. In Figure 1 and Figure 2, we use the abbrevia-
tions. C stands for the convolution 2d layer. CT stands for
the transposed convolution 2d layer. CO stands for the con-
volution 1d layer. S stands for the stride parameter. P stands
for the padding parameter. The number following the layer
name denotes the output of the layer. LReLU stands for
LeakyReLU, where we always use slop 0.2. AdAvg Stands
for adaptive average pool. Blur stands for Blur layer, we use
the same blur kernel [1, 3, 3, 1] as the StyleGAN [6], and the
padding is always set to 1.

Encoder. Our encoder is a (|/log(HW)| — 2) layers
ResNet [3] architecture. We calculate the mean of fea-
tures maps for each downsamples. Finally, the encoder
aggregates them by a mean linear and a multi-layer per-
ceptron. It aims to provide the statistic summarization of
multi-level facial attributes. For example, pale skin and
smiling are likely to desire different size of feature represen-
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tation. Note, our sketch Latent Encoder E, always works on
128 x 128 resolution because we believe larger resolution
reduce the perceptible horizon of convolution layers while
the most important property of sketch is facial layouts.
Attribute Mapping Network. The Attribute Mapping Net-
work takes the final output r; of the Sketch Latent Encoder
E; and the attribute shifting vector a as inputs, and pro-
duces output vector r’;. The Attribute Mapping Network for
S2F-DEC and S2F-DIS are presented in Figure 2 (a) and
Figure 2 (b), respectively.

Final objectives: The final objectives for generator are de-
fined as follow,

For Lemma 3.1,

£G’ = )\semﬁsem + A’I‘EC‘CTCC + )\perceptﬁpercept

+ /\orthoﬁo’rtho + )\advﬁadv + )\domainﬁdomain

ortho

For Lemma 3.2,

= )\sem‘csem + A'recl:rec + )\perceptl:percept
+ )\decomﬂdecom + )\advﬁadv + )\domainﬁdomain

£Gdeco7n

The discriminator loss is defined below,
/C'D = )\advcadv + ARlﬁRl

During training, we Set Agems Arecs Apercept> Aorthos
Adecoms Aadvs Adomain and )‘lRl to 2.5, 1,25, 271, 1, 1,
10! and 1, respectively. For the perceptual Loss, Lpercepts
we use ReLU1, ReLU2, ReLU3, ReLU4 and ReLU5 of
VGG19 [9] (which is pretrained on ImageNet) with weights
275274273 272 and 1.

2. Additional Qualitative Result

Data Statistic. We present the statistic of attributes in train-
ing and testing in Table 1.

Sketch Translation. First, We present the comparison for
machine extracted sketch with Pix2PixHD [10] in Figure 3.
Here, input sketches used in training and testing come from
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Table 1. Attribute statistic of CelebAMask-HQ. The value indicates the number of times each attribute appeared in faces.

Fold Auribute Smiling Male No_Beard Eyeglasses Young Bangs Narrow_Eyes Pale_Skin Big Lips BigNose Mustache Chubby

Training 13446 10512 23084 1404 22194
Testing 646 545 1244 64 1174

5141 3350 1441 10367 9280 1661 1999
284 166 92 523 454 74 103

Algorithm 1: Refine badly drawn sketches.

Input: [;,, K, TT
sketch.
Output: 1,
sketch.
Data: Training data set X // X 1is set of
photo-realistic images.

// I; is a human drawn

// I, is a refined

r; =E4;(I;) // Encode input sketch to
latent code.

TR =[] // Initialize a empty
container.

for x € X do

| TR.append(E;(x))

end

r; = Mean(nearest_neighbors(r;, TR, K)) *
1-TT)+TT *r; // First, get the
K-nearest neighbors of r; in
latent space. Second, calculate
the mean of the nearest neighbors.
Third, apply truncation tricks.

Iut = D(r;) // Generate refined
images.

the same sketch extraction method, which produces high-
quality images using Pix2PixHD, S2F-NDIS, S2F-DEC,
and S2F-DIS. Second, We present the example of translat-
ing all of the human drawn sketch provided by [11] in Fig-
ure 8, Figure 9 and Figure 10. We combine the k-nearest
neighbors algorithm and truncation trick [1] to refine the
badly drawn sketches. The details are provided in Algo-
rithm 1. We visualize the impact of truncation ratio and
nearest neighbors for S2F-DEC and S2F-DIS in Figure 6
and Figure 7, respectively. Besides, we also considering use
the style-transfer to refine the badly drawn sketches. Our
Image Latent Encoder E; is capable of encoding the styles
from photo-realistic facial images. Similar with [5], we de-
fine copying styles from resolution 42 — 82, 82 — 322 and
322 — 2562 as high-level refinement, medium-level refine-
ment and low-level refinement. Examples are presented in
Figure 4 and Figure 5.

Attribute Editing. We present more examples of multi-
attribute editing in Figure 11 and Figure 12, while the ex-
amples of single attribute editing are in Figure 13, Figure
14, Figure 15 and Figure 16. We note the STGAN [8],
AttGAN[4], S2F-NDIS and S2F-DEC have poor “beard”

editing performance. They edit the attributes by follow-
ing the training data distributions, while it is unlikely for
a female to have a beard, which is one of their drawbacks.
However, for S2F-DIS, the semantic vectors for attributes of
interests are orthogonal with each other, and hence lead to
strong editing behaviours (See “Female” and “beard” edit-
ing case in Figure 12).

3. Additional Materials

Quantitative Evaluation. Because of the absence of
ground truth photorealistic images for the badly drawn
sketches, we perform a user study to better understand the
performance of the state of art methods. There are 25 partic-
ipants, where 60% of them are from non-computer science
backgrounds. Similar with [11], they are asked to selecting
the best translation results, which balances the sketch faith-
fulness with the output verisimilitude, among different the
synthesis from different methods. All the sketches (which
are from [11]) and translation results are presented in Fig-
ure 8, 9 and 10. To ensure the fairness of user study, we ran-
domize the order of presenting sketch and translation pairs,
while we also randomly present the order of translation re-
sults without leaking any model information of them. There
are 6000 selections in total. We calculate the user prefer-
ence ratio by counting the fraction of the translation results
being selected, which follows [11].

The user preference ratio is presented in Table 2. S2F-
DEC, S2F-DIS, and DPS [11] have significantly better
scores than the rest of the methods. Our S2F-DEC has the
best average user preference. The S2F-DIS has a similar
result with the second-best average performed method DPS
[11]. Among the 30 sketches, S2F-DEC and S2F-DIS earn
the highest score for 13 individuals and 9 individuals, re-
spectively, which are at least better than DPS [11] (that has
the highest scores for 9 individuals). The user study proves
the superiority of our approach in translating badly drawn
human sketches. Moreover, as 60% of the participants are
from a non-computer science background, it also demon-
strates the potential of deploying our approach in a real-
world application.
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Figure 4. Style transfer for S2F-DEC. In high-level refinement, the face shape is borrowed from the reference image. In medium level
refinement, the high style, facial layouts, and pose are inherited. In low-level refinement, the color schema of the reference image is
preserved. Note, we do not use Algorithm 1 to refine the input sketches here.
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Figure 5. Style transfer for S2F-DIS. In high-level refinement, the face shape is borrowed from the reference image. In medium level
refinement, the high style, facial layouts, and pose are inherited. In low-level refinement, the color schema of the reference image is
preserved. Note, we do not use Algorithm 1 to refine the input sketches here.
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Figure 6. The impact of truncation ratio (TT) and nearest neighbors (K) for S2F-DEC.
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Figure 7. The impact of truncation ratio (TT) and nearest neighbors (K) for S2F-DIS.
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Figure 8. Comparison of translating human drawn sketches (provided by [11]) with Pix2PixHD [10], DeepFaceDrawing (DFD) [2], Deep-
FacePencil (DFP) [7] and Deep Plastic Surgery (DPS) [11]. We use DFD-0 and DFD-1 to represent the medium refinement and fully
refinement of DFD.
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Figure 9. Comparison of translating human drawn sketches (provided by [11]) with Pix2PixHD [10], DeepFaceDrawing (DFD) [2], Deep-
FacePencil (DFP) [7] and Deep Plastic Surgery (DPS) [11]. We use DFD-0 and DFD-1 to represent the medium refinement and fully
refinement of DFD..
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Figure 10. Comparison of translating human drawn sketches (provided by [11]) with Pix2PixHD [10], DeepFaceDrawing (DFD) [2],
DeepFacePencil (DFP) [7] and Deep Plastic Surgery (DPS) [11]. We use DFD-0 and DFD-1 to represent the medium refinement and fully
refinement of DFD.



S2F-DIS

S2F-NDIS S2F-DEC

AttGAN

Reconstruction

Bangs,
Narrow Eyes

Figure 11. Comparison of multi-attribute editing with STGAN [8], AttGAN [4] and S2F-NDIS.
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Figure 12. Comparison of multi-attribute editing with STGAN [8], AttGAN [4] and S2F-NDIS.
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Figure 13. Comparison of single-attribute editing with STGAN [8], AttGAN [4] and S2F-NDIS.
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Figure 14. Comparison of single-attribute editing with STGAN [8], AtGAN [4] and S2F-NDIS.
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Figure 15. Comparison of single-attribute editing with STGAN [8], AttGAN [4] and S2F-NDIS.
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Figure 16. Comparison of single-attribute editing with STGAN [8], AttGAN [4] and S2F-NDIS.



