
Supplementary Material for
What Makes for Effective Few-shot Point Cloud Classification?

Chuangguan Ye1, Hongyuan Zhu2, Yongbin Liao1, Yanggang Zhang1, Tao Chen1, Jiayuan Fan3

1School of Information Science and Technology, Fudan University, China
2Institute for Infocomm Research, A*STAR, Singapore

3Academy for Engineering and Technology, Fudan University, China
{cgye19,19210720121,ygzhang19,eetchen,jyfan}@fudan.edu.cn, hongyuanzhu.cn@gmail.com

A. Details about 3D Backbones

To study the influence of different backbone architec-
tures on FSL, we select three types of current state-of-the-
art 3D networks as the support backbones for features ex-
traction. In this section, we will introduce more structural
details about backbones employed in Section 3 and 5. The
input point cloud instances consist of 512 points with 3d
coordinates and the backbones output a feature vector with
1024 dimensions.

Pointwise MLP Networks: PointNet contains five
MLP layers (64,64,64,128,1024) with learnable parameters,
and batch normalization is used for all MLP layers with
ReLU. After that, we use maxpooling function to aggregate
a global feature vector. Note that we remove the transform
layers in original PointNet [10] framework for simplicity
and efficiencies. PointNet++ consists of 3-level PointNet
Set Abstractions with single scale grouping (SSG), which
have the same stetting in [11]. We remove the fully con-
nected (FC) layers and take the last PointNet Set Abstrac-
tion’s output as the global feature vector.

Convolution Networks: There are 4 X-conv layers
(48,96,192,384) with ReLU in PointCNN. The last X-conv
layer outputs a 384-dimension feature vector and we use
2 FC layers (512,1024) to extend the dimension to 1024
for fair comparisons. RSCNN contains 3 RC-Conv lay-
ers (128,512,1024) with single scale neighborhood (SSN)
grouping. Other settings of RC-Conv are same with [6].
DensePoint contains 3 P-Conv layers, 2 P-Pooling layers
and 1 global pooling layer. The settings of these layers are
same with [5]. We remove the FC layers in RSCNN and
DensePoint for outputting the 1024-dimension global fea-
ture vectors too.

Graph-based Network: DGCNN is the embedding
network of our baseline for 3DFSL, consisting of 4 Edge-
Conv layers (64,64,128,256). The outputs of each Edge-
Conv will be concatenated as a 512-dimension feature map.
Then the feature map will be fed into an MLP layer to ex-

tend its dimension to 1024. At last, a maxpooling function
is used to aggregate the global features and outputs a 1024-
dimension feature vector. Figure 6 illustrates the network
architecture of DGCNN.

B. Details about FSL Baselines

In this section, we will introduce more adapting details
about FSL algorithms for few-shot point cloud classification
in Section 3 and 5.

Metric-based methods: We take Squared Euclidean
Distance as metric function and use Cross-Entropy loss
in ProtoNet. For RelationNet, we first construct support-
query pair features fsq ∈ R2×1024 by concatenating the
support feature vectorfs ∈ R1×1024 and query feature
vectorfq ∈ R1×1024. Then the pair features fsq are fed
into a relation module, which contains two convolutional
blocks ((1x1 conv 128 filters, BN, ReLU), (1x1 conv 1 fil-
ters, BN, ReLU)) and two FC layers (128,L) (L denotes the
number of classes at a meta-task). After that, relation mod-
ule outputs the predicted relation score and Mean Square
Error loss is used to regress relation score to ground truth.
For FSLGNN, we construct 4 GNN layers with the same
setting in [15], and use Cross-Entropy loss as loss function.

Optimization-based methods: We use two FC lay-
ers (256, K) as the classifier in Meta-learner and MAML.
Batch normalization is used for the first FC layer with ReLU
and Dropout operation. There is a 2-layer LSTM in Meta-
learner following the same configuration in [12], where the
first layer is a normal LSTM and the second layer is meta-
learner LSTM for gradient state updating. The meta learn-
ing rate in MAML is 0.1 for 5-shot and 0.5 for 1-shot. The
classification head in MetaOptNet is the multi-class SVM
presented in [1]. We also take Cross-Entropy loss as loss
function in these methods.



MLPN
x3

in
p

u
t 

p
o

in
ts

Ed
ge

C
o

n
v

N
x6

4

Ed
ge

C
o

n
v

N
x6

4

Ed
ge

C
o

n
v

N
x1

2
8

Ed
ge

C
o

n
v

N
x2

5
6

C

N
x5

1
2

N
x1

0
2

4

1x1024max 
pool

feature vector

Figure 6. The architecture of DGCNN for feature embedding. The details of EdgeConv could be find in [19].

C. Details about Channel Interaction Module
The architecture of Channel Interaction Module is shown

in Figure 7. Query-vector q and key-vector k are generated
from the input feature f with two linear embedding func-
tions φ and γ. Then the channel relation score map can
be denoted as R = qTk. After that, we can obtain the
reweighted feature v = fR′, where R′ = softmax(R).
Finally, for compensating the discarded information, we
combine v and f to get updated feature f

′
= v + f .

Channel Interaction Module

x x +

T

Figure 7. Details of Channel Interaction Module in Self-Channel
Interaction Module introduced in Section 4.2.1.

D. Details about Cross Instance Fusion Module
Cross-Instance Fusion (CIF) module is proposed to ad-

dress the law-data and high intra-class variances issues in
Section 4.2.2, which can enrich prototypical information
and rectify feature distribution by fusing prototype features
and query features with a meta-learner.

As illustrated in Figure 8, for updating prototype fea-
tures fp, we first concatenate each prototype feature with
K1 query features with the highest cosine similarity and get
the concatenated feature Zfp . Then we employ two simple
1×1 Conv layers as a meta-learner to learn cross-instance
interactions and output updated prototype features f

′

p. Con-
cretely, the first layer is designed to encode Zfp to generate
a d-dim feature interaction Z

′

fp
, and the second layer is used

to adjust the interaction’s dimension so as to generate a re-
weight matrix Wfp for Zfp . Finally, we update the proto-
type features by fusing the concatenated feature Zfp based
on Wfp . Similarly, we could also easily update the query
features fq by CIF module. Furthermore, we use the vali-
dation set to determine the value of K1 and h, and set them
to 45 and 64 respectively according to the results shown in
Figure 9.

SoftMax SUMConv Conv

Prototype
Features

Query
Features

Updated
Prototype 
Features

Rank
and

Concat

Cross-Instance Fusion Module

Figure 8. The illustration of updating prototype features by CIF
module. Here we set K1 = Nq . ⊙ is the instance-wise product.

E. Extra Experimental Results
We also conduct extra experiments to further explore the

effects of our proposed network in two scenarios, including
fine-grained few-shot classification and 2D image few-shot
classification.

Fine-Grained Few-Shot Classification. We study the
proposed network in a fine-grained classification scenario
to evaluate its ability to distinguish similar categories. We
first train the baselines and the proposed network on meta-
train data of ShapeNet70-FS, and test them on seven subcat-
egories of “Airplane” in meta-test data under a 5way-1shot-
15query setting. The mean accuracy of each class are listed
in Table 9. One can see that, our proposed network out-
performs other baselines most of the time and improve the
mean accuracy more than 3%.

Ablation Studies of Residual Design in SCI Module.
We design the SCI as a residual update to compensate the
discarded information, because the Softmax operation can
highlight the weight of disciminative channels, but it also
may discard some information from the original features.
The results of ablation studies listed in Table 10 show that
this residual design can gain performance improvement.

Comparison Results of More-way k-shot Setting.
We conduct the experiments on ShapeNet70-FS with
N={5,10,15}, K={1,5}, and the results are in Table 11.
A larger N-way setting is more challenging with signifi-
cantly performance dropping. One possible explanation is
that larger classes with few support examples make training
harder, leading to obscurer class boundaries.

Effects of CIA for 2D FSL. While the CIA model is de-
signed for few-shot point cloud classification task, we also



65%

67%

69%

71%

73%

75%

77%

5 15 30 45 60 75

Ac
cu

ra
cy

K1

ModelNet40_FS
ShapeNet70_FS

68%

70%

72%

74%

76%

78%

4 8 16 32 64 128

Ac
cu

ra
cy

h

ModelNet40_FS
ShapeNet70_FS

(a) (b)

Figure 9. (a) and (b) are the ablative results of different values
of K1 and h in Cross-Instance Fusion module respectively. We
conduct these ablation experiments under the 5way-1shot-15query
scenario on ModelNet40 FS and ShapeNet70 FS.

Methods Airline Jet Fighter
Swept
Wing

Propeller
Plane Bomber

Delta
Wing Mean

ProtoNet [16] 49.59 25.21 27.64 41.30 35.76 20.73 46.24 35.22
RelationNet [17] 49.28 24.55 30.36 41.03 28.26 24.05 44.79 34.63

FSLGNN [15] 48.53 23.56 21.01 31.75 24.29 23.58 58.49 33.08
Meta-learner [12] 29.76 21.92 30.94 27.83 27.02 24.96 30.22 27.53

MAML [2] 56.03 26.65 34.37 21.90 16.43 25.30 15.71 28.12
MetaOptNet [4] 46.81 24.72 29.05 39.74 24.42 25.17 38.23 32.60

Ours 48.23 25.51 35.16 41.88 46.63 26.06 48.02 38.80
Table 9. 5way-1shot-15query classification results (accuracy %)
on fine-grained classes in ShapeNet70-FS.

ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

w/o Res 74.64 86.81 72.98 82.87
w/ Res 75.70 87.15 73.57 83.24

Table 10. The ablation study of residual design in SCI module.

ShapeNet70-FS
5w-1s 5w-5s 10w-1s 10w-5s 15w-1s 15w-5s

ProtoNet 65.96 78.77 50.57 67.29 43.15 59.39
RelationNet 65.88 76.25 50.93 63.14 43.04 53.31

MetaOpt 65.08 77.81 48.97 64.50 40.83 56.10
Ours 69.36 80.31 54.26 67.69 47.38 60.48

Table 11. The comparison results under larger-way settings.

study the effects of CIA model for the case of 2D image
few-shot classification on miniImagenet and tieredImagenet
with ResNet12 as backbone. The results shown in Tabel 12
indicate that the CAI model also can improve the classifica-
tion performance of ProtoNet [16], especially for 1-shot set-
ting, and achieves competitive performance compared with
state-of-the-art 2D FSL approaches.

F. More Visualization Analysis
Visualization Analysis of Feature Heatmap. We fur-

ther visualize the feature heatmap of point cloud instances
to qualitatively evaluate the proposed modules in Section
4.2. Figure 10 are the comparative results before and af-
ter incorporating SCI module and CIF module respectively.
Deeper color means higher feature responding in this re-
gion. We could observe that the SCI module pays more
attention on the discriminative fine-grained parts of differ-

Backbone Method miniImagenet tieredImagenet
5w-1s 5w-5s 5w-1s 5w-5s

ResNet12

SNAIL [8] 55.71 68.88 - -
TADAM [9] 58.50 76.70 - -
ECM [13] 59.00 77.46 63.99 81.97
TPN [7] 59.46 75.65 59.91 73.30

MetaOptNet [4] 62.64 78.63 65.99 81.56
CAN [3] 63.85 79.44 69.89 84.23

ProtoNet [16] 60.37 79.02 65.65 83.40
ProtoNet [16]+CIA 63.05 80.02 70.10 83.73

Table 12. Comparisons of the classification results after incorpo-
rating CIA Module into ProtoNet [16] on miniImagenet [18] and
tieredImagenet [14] with ResNet12 as backbone.

ent classes,such the ”cap” of Bottle and the “legs” of Stool,
while the CIF module could activate more diverse regions,
which could help to generate more informative features.
More comparative visualizations are shown in Figure 11
and 12. One can see that, the CIA module can highlight
more discriminative parts and structures, which enriches the
information learned from point cloud instances.

G. Dataset Split
ModelNet40-FS is a new split of ModelNet40, contain-

ing 30 training classes with 9,204 examples and 10 dis-
joint testing classes with 3,104 examples. Statistics of
ModelNet40-FS are reported in Table 13, and details of
training set split and testing set split are listed in Table 15.

Train Test Total
Classes 30 10 40

Instances 9,204 3,104 12,308
Table 13. Statistics of ModelNet40-FS dataset.

ShapeNet70-FS is adapted from ShapeNetCore, includ-
ing 50 base classes from 34 categories and 20 novel classes
from 14 categories. Statistics of the ShapeNet70-FS are re-
ported in Table 14, and details of training set split and test-
ing set split are listed in Table 16 and Table 17 respectively.

Train Test Total
Categories 34 14 48

Classes 50 20 70
Instances 21,722 8,351 30,073

Table 14. Statistics of ShapeNet70-FS dataset.

References
[1] Koby Crammer and Yoram Singer. On the algorithmic imple-

mentation of multiclass kernel-based vector machines. Jour-
nal of machine learning research, 2(Dec):265–292, 2001.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, 2017.



Training Set Testing Set
Class Num Class Num Class Num Class Num
chair 989 car 297 radio 124 bookshelf 672
sofa 780 desk 286 xbox 123 vase 575

airplane 725 dresser 286 bathtub 156 bottle 435
bed 615 glass box 271 lamp 144 piano 331

monitor 565 guitar 255 stairs 144 night stand 286
table 492 bench 193 door 129 range hood 215
toilet 444 cone 187 stool 110 flower pot 169

mantel 384 tent 183 wardrobe 107 keyboard 165
tv stand 367 laptop 169 cup 99 sink 148

plant 339 curtain 157 bowl 84 person 108
Table 15. The training and testing classes of ModelNet40-FS
dataset.

Training Set
ID Class Num ID Class Num

04256520 sofa 1520 04037443 race car 323
03179701 desk 1226 20000011 garage cabinet 307
04401088 phone 1089 03948459 handgun 307
02738535 armchair 1051 04285965 sport utility 300
02924116 bus 939 03928116 piano 239
02808440 bathtub 856 02818832 bed 233
02992529 radiotelephone 831 04330267 stove 218
03891251 park bench 823 03100240 convertible 208
03063968 coffee table 763 04285008 sports car 197
20000027 club chair 748 02880940 bowl 186
02858304 boat 741 03141065 cruiser 181
04250224 sniper rifle 717 02961451 carbine 172
03046257 clock 651 04004475 printer 166
03991062 pot 602 03761084 microwave 152
03593526 jar 596 04225987 skateboard 152
03237340 dresser 482 04460130 tower 133
04380533 table lamp 464 20000020 cantilever chair 125
03642806 laptop 460 02801938 basket 113
04166281 sedan 429 02814533 beach wagon 108
03624134 knife 424 02946921 can 108
20000037 rectangular table 421 03938244 pillow 96
03119396 coupe 418 03594945 jeep 95
04373704 swivel chair 398 03207941 dishwasher 93
20000010 desk cabinet 356 04099429 rocket 85
03790512 motorcycle 337 02773838 bag 83

Table 16. The training classes of ShapeNet70-FS dataset. ”ID”
corresponds to WordNet synset offset.

[3] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan,
and Xilin Chen. Cross attention network for few-shot classi-
fication. In NeurIPS, 2019.

[4] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In CVPR, 2019.

[5] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In CVPR, pages 5239–5248, 2019.

[6] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, pages 8895–8904, 2019.

[7] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho

Testing Set
ID Class Num ID Class Num

03211117 display 1093 03337140 file cabinet 298
02690373 airline 1054 20000001 swept wing 271
03467517 guitar 797 03797390 mug 214
03325088 faucet 744 04554684 washer 169
03595860 jet 675 03513137 helmet 162
03335030 fighter 597 04012084 propeller plane 137
02876657 bottle 498 02867715 bomber 130
02871439 bookshelf 452 03174079 delta wing 121
04468005 train 389 02942699 camera 113
02747177 ashcan 343 03710193 mailbox 94

Table 17. The testing classes of ShapeNet70-FS dataset. ”ID”
corresponds to WordNet synset offset.

Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate
labels: Transductive propagation network for few-shot learn-
ing. In ICLR, 2019.

[8] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. In ICLR,
2018.

[9] Boris N. Oreshkin, Pau Rodrı́guez, and Alexandre Lacoste.
TADAM: task dependent adaptive metric for improved few-
shot learning. In NeurIPS, 2018.

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017.

[11] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017.

[12] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. 2017.

[13] Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Few-shot learning with embedded class models and shot-free
meta training. arXiv preprint arXiv:1905.04398, 2019.

[14] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. ICLR, 2018.

[15] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot
learning with graph neural networks. In ICLR, 2018.

[16] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NeurIPS, 2017.

[17] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In CVPR, 2018.

[18] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In NeurIPS, 2016.

[19] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.



(a) ProtoNet (b) ProtoNet+SCI (c) ProtoNet+CIF (d) ProtoNet+CIA

Figure 10. The heatmap of point cloud instances before and after using CIA module (SCI and CIF). Deeper color means higher feature
responding in this region. The classes of each row are ’Bottle’,’Airplane’ and ‘Stool’ respectively.



(a) ProtoNet (b) ProtoNet+CIA (c) ProtoNet (d) ProtoNet+CIA

Figure 11. The heatmap of point cloud instances. Deeper color means higher feature responding in this region. Column(a) and column(c)
are the results of ProtoNet. Column(b) and column(d) are the results of ProtoNet incorporating with CIA module.



(a) ProtoNet (b) ProtoNet+CIA (c) ProtoNet (d) ProtoNet+CIA

Figure 12. The heatmap of point cloud instances. Deeper color means higher feature responding in this region. Column(a) and column(c)
are the results of ProtoNet. Column(b) and column(d) are the results of ProtoNet incorporating with CIA module.


