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In this supplementary material, we provide our method’s
additional details, analyses, and experimental results.

A. Implementation details
The effectiveness of S3D are shown in different experi-

mental settings in our main paper. In this section, we pro-
vide our experimental details.

Some results of Tables 1, 2, and 3 of our main paper are
borrowed from the paper of MME [7]: the results of S+T,
DANN, ADR, CDAN, ENT, and MME in Table 1, their re-
sults with the AlexNet base network in Table 2, and their
accuracies of unsupervised domain adaptation in Table 3.

Datasets. In Figure s.2, we visualize the examples of Do-
mainNet and Office-Home datasets. In both datasets, all of
four domains are distinct from each other, while Real and
Product domains in Office-Home are quite similar.

Baselines. For a fair comparison, we reproduce S+T,
MME [7], and APE [4] if the accuracy is not stated in their
papers. To reproduce MME, we follow the official imple-
mentation 1 and set λ (from MME) to 0.1. For APE, we
follow the official implementation 2 and set α, β, and γ to
10, 1, and 10, respectively.

Many-shot semi-supervised domain adaptation experi-
ments. We use ResNet [3] for the many-shot experiments
on DomainNet dataset in Figure 4. The accuracy of the S+T
and MME baselines for one-shot and three-shot settings are
borrowed from the MME paper.

Unsupervised domain adaptation experiments. In Ta-
ble 3, we borrow the accuracy of AlexNet [5] from MME.
We reproduce the accuracy of ResNet for unsupervised do-
main adaptation experiments under controlled settings.

1https://github.com/VisionLearningGroup/SSDA_
MME

2https://github.com/TKKim93/APE
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Figure s.1: Accuracy (%) in Real to Sketch one-shot sce-
nario on the DomainNet using ResNet with various m.

Ablation studies. We conduct our experiments on Do-
mainNet using ResNet34 for ablation experiments shown in
Tables 4 and s.5. Table s.5 indicates the full ablation study
of proposed components. In Figure 6, we use AlexNet for
our base network and DomainNet for our dataset.

Inter-domain and intra-domain discrepancy his-
tograms. We use ResNet for Office-Home [8] on
one-shot setting to plot inter-domain and intra-domain
discrepancy histograms shown in Figure 5. We choose
the Clipart domain for the source domain and the Product
domain for the target domain. For Figures 5a and 5c, we
plot histograms of cosine similarity after the pre-training
stage, specifically from 10,000th iteration. We plot the
histogram every 3,000 iterations until the model converges.
For APE, we plot the converged model for a comparison.

The balancing hyper-parameter λ. We use λ to balance
Lpair in the overall loss and make up for the incomplete-
ness of pseudo-labels. We set the hyper-parameter λ using
a ramp-up function like in [2]:

λ =
2

1 + e−mt
− 1, (s.1)

where t ∈ [0, 1] increases over iterations. The increasing t
makes λ increases so thatLpair influences more on the learn-
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Figure s.2: DomainNet and Office-Home datasets. We visualize four domains of four classes on each dataset.
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(a) One-shot setting. δ̄=2.88.
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(b) Three-shot setting. δ̄=3.46.

Figure s.3: Accuracy (%) on Real to Clipart (DomainNet)
scenario using ResNet34 with various δ.

ing process. This incremental weighting technique is ade-
quate since pseudo-labels are likely to be incorrect at the
beginning of the sample-to-sample training stage.

To find a proper ramp-up function, we vary m to exam-
ine the effects of weighting Lpair. Changing m controls the
slope of the ramp-up function. We choose Real to Sketch
one-shot domain scenario, and select m at the best valida-
tion accuracy. In DomainNet and Office-Home experiment,
we set m to 8 on both AlexNet and ResNet. Figure s.1
shows the accuracy of our model when varying m.

The class logit margin δ. In Eq. (4), the margin δ is used
to filter out unreliable target samples. Here, δ determines a
trade-off between a number of pseudo-labels used and how
reliable the pseudo-labels are. A small δ makes the pseudo-
labels of the student set inaccurate. On the contrary, a large
δ makes RSS filter many unlabeled target samples so that
few student samples are used for training. Therefore, proper
δ is critical for a student-set to contain precise and various
student samples.

Method δ
1 2 3 δ̄ 4

S3D (α = 0.7) 72.6 72.9 73.1 73.5 73.4
S3D (α = 0.8) 72.5 74.4 75.0 75.9 75.7
S3D (α = 0.95) 72.4 74.1 75.7 75.9 75.8
S3D w/o α 72.2 72.9 75.2 75.6 75.5

Table s.1: Accuracy (%) on Real to Clipart (DomainNet)
three-shot scenario using ResNet34 by varying δ and α.

We investigate whether the average margin δ̄ of all unla-
beled target samples is appropriate for δ or not. Figure s.3
shows the experiment, which is conducted on DomainNet
Real to Clipart scenario using ResNet34. We compare the
result of the average margin δ̄ to those of the margin δ from
1 to 4. δ̄ is initially calculated from the pre-trained model
and is fixed afterward. In Figure s.3, the model calculates
δ̄ as 2.88 and 3.46 in one-shot and three-shot setting,
respectively. The model shows the best accuracy when the
student-set is generated using δ̄. This result describes that
δ̄ is an appropriate margin for RSS to make student-set
abundant and precise.

Performance varying both δ and α. Unlike [9], we pre-
set the margin δ by averaging all unlabeled target’s margin
so that we can obtain target adaptive δ. This is because S3D
deals with various target domains different from [9], which
considers only Cityscapes [1] as a target dataset. Also, the
threshold α is designed to avoid the situation that CAG [9]
might exclude the sample with high confidence because of
its low margin. To search the best values of δ and α, we
jointly vary the values of them. The details are the same
as the setting in Figure s.3b. The results are shown in Ta-
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Figure s.4: The locations to apply AG operation. The yel-
low blocks represent the place to apply AG. (a) The feature
extractor of AlexNet. (b) The feature extractor of ResNet34.

ble s.1, where S3D (α = 0.95, δ = δ̄) performs the best. It
also shows that S3D is not sensitive to the margin parameter
δ and the threshold α.

The locations to apply AG. To generate assistant fea-
tures, AG operation is applied to different layers. In
AlexNet, the operation can be placed at any yellow blocks
shown in Figure s.4 (a). In ResNet34, the operation can be
located at the end of every four residual blocks shown in
Figure s.4 (b). We conduct experiments on various combi-
nations of the location in Table s.2. We conjecture that the
optimal combination of the operations is different between
ResNet and AlexNet. As the overall accuracy of ResNet is
higher than that of AlexNet, the pairs from ResNet are more
reliable and thus the semantic meanings from teachers are
more effective for students in ResNet than AlexNet. We
select all locations for ResNet in DomainNet and Office-
Home. For AlexNet, we select AG 1 and AG 1,2 in Do-
mainNet and Office-Home, respectively.

Network AG
1 1,2 1,2,3 1,2,3,4

AlexNet 39.9 38.5 31.8 32.6
ResNet34 60.5 61.2 62.5 65.1

Table s.2: Accuracy (%) in two networks on the Domain-
Net Real to Sketch one-shot scenario with various location
combinations of AG operation.

Net Method DomainNet Office-Home

AlexNet

S+T 40.0 44.1
MixStyle 39.3 43.5
S3D (ε = 1) 46.7 46.8
S3D (ours) 48.7 49.5

ResNet34

S+T 56.9 62.3
MixStyle 66.6 60.2
S3D (ε = 1) 69.1 69.8
S3D (ours) 69.9 70.3

Table s.3: Average classification accuracy (%) on the Do-
mainNet and Office-Home datasets for one-shot on all do-
main scenarios that we cover.

Method 1-shot 3-shot
CDAN 62.9±1.5 65.3±0.1
ENT 59.5±1.5 63.6±1.3
MME 64.3±0.8 66.8±0.4
APE 65.2±0.9 67.3±0.9
S3D 67.7±0.6 69.7±0.7

Table s.4: Classification accuracy (%) and standard devia-
tion (%) on the Sketch to Painting scenario in the Domain-
Net averaged over three runs.

B. Additional experimental results
Comparison with MixStyle [10]. The main difference
between S3D and MixStyle is that we introduce the assistant
(intermediate style feature) as a guidance for the student.
The assistant is designed to transfer its knowledge to the
student using knowledge distillation; for this reason, we do
not back-propagate gradients through the path of assistant
features (see the second dotted branch in Figure 3). This
strategy has not been explored before. MixStyle, which
is introduced for domain generalization, directly trains the
model with stylized features; the features’ predictions and
given labels are used for calculating the cross-entropy loss,
and the gradients are back-propagated through the features.
This scheme is not adequate for SSDA for the reason that
the goal of SSDA is to adapt the learner to the target do-
main. For comparison, we conduct experiments where we
directly apply the scheme of [10] to SSDA; we only change
the Lpair loss to the cross-entropy loss between assistants’
predictions and pseudo-labels. We also searched the best
hyper-parameters for this model as we did for S3D. We
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Method Lunl Lpair RSS R to C R to P P to C C to S S to P R to S P to R MEAN
DANN 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4
MME 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4
APE 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6

S3D

7 7 7 56.8 60.5 55.4 51.7 55.5 47.5 72.0 57.1
3 7 7 68.7 65.6 68.8 59.2 64.1 61.6 78.4 66.6
3 7 3 71.6 69.1 70.7 58.7 65.4 62.0 79.6 68.2
7 3 7 67.4 65.0 67.1 61.2 64.9 62.7 77.5 66.5
7 3 3 73.1 67.1 70.6 57.7 65.8 62.4 73.6 67.2
3 3 7 69.4 65.7 69.7 61.3 65.5 61.7 78.6 67.4
3 3 3 73.3 68.9 73.4 60.8 68.2 65.1 79.5 69.9

Table s.5: Comprehensive ablation study of S3D on DomainNet dataset (%) for one-shot setting.

Method 0-shot 1-shot 3-shot 5-shot 10-shot 20-shot

S+T 54.5 55.6 60.0 64.6 67.6 71.5
MME 67.6 70.0 72.2 74.8 76.8 77.9
APE 65.4 67.0 72.2 72.8 76.9 77.0
S3D 72.7 73.3 75.9 77.5 78.0 79.1

(a) Real to Clipart.

Method 0-shot 1-shot 3-shot 5-shot 10-shot 20-shot

S+T 55.9 56.8 59.4 64.4 68.4 71.1
MME 67.1 69.0 71.7 73.0 76.4 78.0
APE 63.8 67.7 71.3 72.6 76.6 78.1
S3D 66.5 73.4 75.1 76.9 77.2 79.6

(b) Painting to Clipart.

Table s.6: Classification accuracy (%) on DomainNet with
a varying number of target labels. (a) corresponds to Fig-
ure 4a, and (b) corresponds to Figure 4b.

set m to 9 for all experiments. For ResNet, we select AG
1,2,3 for DomainNet and AG 1,2,3,4 for Office-Home. For
AlexNet, we select AG 1 for DomainNet and AG 1,2 for
Office-Home. In Table s.3, it is obvious that MixStyle is not
effective except for the experiment of ResNet in Domain-
Net. The model even shows low accuracy than the simple
baseline S+T in several experiments.

The effect of intermediate styles. In Table s.3, we ex-
amine the effectiveness of transferring an intermediate style
rather than a teacher’s individual style. In Eq. (5), by con-
trolling the value of ε, we can manipulate the style of the
assistant feature. As the value of ε is close to 1, the style of
the assistant approaches to the teacher’s one. S3D (ε = 1)
is the experiment that the assistant feature follows only the
style of the teacher. When we compare S3D (ε = 1) and
S3D, the results show that the intermediate styles are more
effective than the teacher’s style to reduce the domain dis-
crepancy.

Multiple runs. For a fair comparison, we report the av-
erage accuracy and its standard deviation of three indepen-
dent runs in Table s.4. Our method less deviates than most
of previous methods do, showing that our method is ade-
quately stable and effective.

Many-shot experiments. In Table s.6, we attach exact
values plotted in Figure 4 of the main paper.

Extra t-SNE visualization Figure s.5 visualizes how
S3D embeds instances from two domains over iterations.
The embeddings are obtained using ResNet34 from ex-
amples of Office-Home dataset in the one-shot setting,
and we visualize the first 30 classes for simplicity. We
adopt t-SNE [6] with the perplexity of 30.0 and 1000
iterations. We observe that the sample-to-sample self-
distillation stage clearly enhances the embedding quality
from the pre-training stage. Two main points of the results
are: (1) target samples gradually align with source samples
over iterations. (2) samples from the same class pull each
other over iterations.

Comprehensive ablation study. We evaluate different
combinations of the proposed component in Table s.5 and
compare them with previous work of [7, 2, 4]. The per-
formance consistently increases as more components are
used, indicating that each proposed component is effective
for SSDA. Note that our method with all the components
sets a new state of the art, outperforming APE [4].
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(a) t-SNE visualization after pre-training stage on Clipart → Product.
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(b) t-SNE visualization at the final model on Clipart → Product.
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(c) t-SNE visualization after pre-training stage on Art → Clipart.
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(d) t-SNE visualization at the final model on Art → Clipart.

Figure s.5: t-SNE visualization on the Office-Home. Left column: source and target embedding spaces. Middle column:
source embedding spaces. Right column: target embedding spaces.
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