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In this supplementary material, we provide further com-
parisons to investigate the effects of different components
in MEGAN.

1. More Ablation Study
1.1. Further Analysis on Different Components

We conduct experiments of MEGAN w/o GCN,
MEGAN w/o non-local, MEGAN w/o global-local feature
aggregation (GL-Agg). In the table 1, results show that the
proposed method achieved significant improvements over
i). w/o GCN, ii). w/o NLRB, or iii). w/o GL-Agg. This
proved the effectiveness of each component.

Method Metric w/o GCN w/o NLRB w/o GL-Agg MEGAN (our)

Vid4 PSNR 26.42 26.44 26.45 26.57
SSIM 0.8007 0.8017 0.8020 0.8044

Vimeo-Fast PSNR 36.93 37.01 37.03 37.18
SSIM 0.9424 0.9430 0.9431 0.9446

Table 1: Ablation study on different components over Vid4
and Vimeo-Fast dataset.

1.2. Further Analysis on NLRB

The major differences in NLRB between [4] and our
method includes: i) [4] uses Gaussian function as the pair-
wise function, but we use dot product similarity. The rea-
son why we use dot product similarity is to boost conver-
gence, which allows us to train very deep networks, being
more suitable for STVSR. Table 2 reports the performance
of using three types of functions in 600,000 iterations on
2 1080Ti GPUs; 2) Using [4] introduces higher computa-
tional complexity, especially in the context of limited GPU
resources.

1.3. NLRB vs LMGA

In our work, NLRB is used to capture channel correla-
tions among low-level features because it utilizes informa-
tion in a short range. Since the enlarged (interpolated) fea-
tures are often of low quality, LMGA is designed to refine

Method Gaussian function Embedded Gaussian function Dot Product Similarity (our)
PSNR 26.46 26.39 26.57
SSIM 0.8024 0.8001 0.8044

Table 2: Ablation study on different components over Vid4
and Vimeo-Fast dataset.

interpolated frame features for better spatial alignment, and
model temporal correlations among whole videos because
the information from longer content could be utilized. By
well exploiting both short and long-range space-time depen-
dencies, it will complementarily enhance performance. The
results in Table 1 also validate our claims.

1.4. Random Sampling in LMGA

The feature aggregation in LMGA module is designed to
fuse local feature and global feature, which is sampled from
the shuffled global pool to capture the global information.
We interpret random sampling as an effective data augmen-
tation: the key frame feature can gather information from
different subsets of frame features among the same video in
different training steps, which further improves MEGAN’s
generalization ability. In Table 3, we also compare random
sampling with uniform sampling on Vid4, proving the effec-
tiveness of random sampling. This is because uniform sam-
ple only captures a short local range of semantics, while ran-
dom sampling can utilize rich information beyond a fixed
content. We also can observe that “w/o GL-Agg” by remov-
ing feature aggregation results in the performance degrada-
tion in Table 1.

Method PSNR SSIM
Uniform Sampling 26.45 0.8018
Random Sampling (our) 26.57 0.8044

Table 3: Ablation study on random sampling in LMGA.
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Table 4: Ablation study of different components on Vid4 [2].

Case Index 1 2 3 4 5 6 7

Channel-based Attention Block [5] ! # # # ! # #

Non-local Block [3] # ! # # # ! #

Non-local Residual Module [4] # # ! # # # !

LMGA # # # ! ! ! !
PSNR (dB) 26.27 26.34 26.40 26.44 26.47 26.51 26.57
SSIM 0.7985 0.7991 0.7999 0.0817 0.8018 0.8021 0.8044

Table 5: Ablation study of block number on Vid4 [2].

Case Index 1 2 3 4 5 6 7 8 9 10
PFRDB Number 0 5 10 20 30 5 5 5 5 5
ResBlock Number 20 20 20 20 20 0 5 10 15 30
PSNR (dB) 26.45 26.57 26.57 26.58 26.58 26.39 26.46 26.50 26.54 26.57
SSIM 0.8024 0.8044 0.8045 0.8047 0.8045 0.8008 0.8012 0.8021 0.8028 0.8045
Parameter Number 10.01M 10.71M 11.41M 12.80M 14.20M 9.23M 9.60M 9.97M 10.34M 11.46M

1.5. Further Analysis on Attention-based Blocks
and LMGA

In Table 4, when comparing cases 1-3, we use different
types of attention blocks (Channel-based Attention Block
[5], Non-local Block [3], and Non-local Resblock [4]) in-
stead of the proposed LMGA module. We can observe that
the non-local module brings performance improvements.
This suggests that, by exploiting low-level and high-level
features, MEGAN is capable of utilizing non-local infor-
mation to learn better representational ability. In case 4,
we also learn that the proposed LMGA block contributes
to superior performance gains, regardless of whether we
use attention-based blocks (cases 1-3). This demonstrates
that we can significantly improve the reconstruction perfor-
mance in space-time domain by dynamically incorporating
information from spatial features and temporal contexts.

We fix the proposed LMGA in MEGAN in cases 5-7.
As seen in Table 4, we observe that performance improve-
ments benefit from utilizing Non-local Resblock, suggest-
ing adopting residual non-local learning is able to capture
long-range spatio-temporal correlations, which results in a
marginal gain in network performance. Besides, residual
learning [1] is employed to promote the training process
more stable.

1.6. Further Analysis on Block Number

In this section, we conduct extensive experiments to in-
vestigate the effects of block number in Table 5. When
comparing cases 1-5, we investigate the effects of PFRDB
while fixing the number of ResBlock at 20. We observe that
adding more PFRDBs [4] achieve a small but consistent per-
formance improvement. However, introduction of PFRDBs
requires more computational cost and much training time.
So we use 5 PFRDBs to learn more spatial-temporal infor-
mation by leveraging low- and high-level features.

Besides, we compare cases 6-10 to study the effects of
ResBlock when the number of ResBlock is fixed at 5. It can
show that we achieve a marginal performance gain when
adding more ResBlocks. This suggests that we can achieve
robust representation ability while maintaining relatively
small network size. To balance the trade-off between com-
putational cost and time, we adopt 20 ResBlocks here.

Overall, our MEGAN can make superior improvements
including 5 PFRDBs and 20 ResBlocks. Using the proposed
LMGA module, our MEGAN can better handle complex
dynamic space-time scenes
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