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The supplementary material is organized as follows:
Section A provides additional visualization of the source
separation and localization; Section B contains additional
details of the network architectures; and Section C presents
the optimization and evaluation configurations.

A. Additional Qualitative Results
This section provides additional qualitative results of the

visual sound source separation and source localization re-
sults. The experimental setups are as explained in the main
paper.

Sound Source Localization Figures B and C provide ad-
ditional qualitative results of the sound source localiza-
tion with the proposed Audio-Motion Embedding (AME)
framework, Cascaded Opponent Filter (COF), and Multi-
sensory using MUSIC-21 and AVE datasets, respectively.

Visually Guided Sound Source Separation Figures D
and E present additional qualitative results of separating
mixtures of two sound sources using AMnet from the
MUSIC-21 and AVE datasets, respectively. Figure F shows
results of separating mixtures of three sound sources from
MUSIC-21. Figure G contains results of separating sources
of the same type from the MUSIC-21 dataset.

Quantitative experiments in fully natural scenarios are
not possible due to the lack of ground truth for the source
components. However, a qualitative example is shown in
Figure A (click to play).

B. Network Architectures
This section provides additional details of the network

structures and implementation.

B.1. Audio-Motion Embedding Framework

Motion Network The Motion Network EM utilizes a
3D version of Res18 on the input video sequence of size

(a) Video (b) Mixture (c) Guitar (d) Cello

Figure A: Visually guided sound source separation in natu-
ral scenario. Use Adobe Acrobat Reader to play.

3 × T × H × W, where T = 48 and H = W = 224.
With the stride=16 on spatial dimension and stride=4 on
the temporal dimension, we yield the motion representa-
tion fM1 of size CM × T

′
× H

′
× W

′
, where CM = 512,

T
′
=12 and H

′
= W

′
= 14. With an additional 3D convo-

lution, we obtain a single channel feature map fM2 of size
1 × T

′
× H

′
× W

′
. Furthermore, we add a spatial average

pooling over the H
′

and W
′

dimensions to achieve the final
motion embedding vector fM3 of size 1 × T

′
.

Sound Network The Sound Network ES uses Res18-1D
architecture to map the input audio waveform into a com-
mon vector space with the Motion Network. The Sound
Network is composed of a series of 1D convolutions. A
fractional poling and a 1D convolution layers are applied
on top to obtain the final one channel embedding vector of
size 1 × T

′
.

B.2. Audio-Appearance Sound Source Separation

Appearance Network We adopt frame augmentation of
random scaling, random horizontal flipping, and random
cropping (224 × 224) during training for all datasets. We
apply a dilated Res18-2D with dilation=2 to obtain the ap-
pearance representations. For an input RGB image of size
3 × H × W, we truncate the Res18-2D after stride=16 and
achieve the appearance feature of size CA×H

′
×W

′
, where

H
′
= W

′
= 14, CA equals to 21 and 28 for MUSIC-21
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and AVE datasets respectively. CA represents the category
numbers of dataset. By performing a spatial average pool-
ing operation on the top, the Appearance Network produces
the representation fA of size 1 × CA.

Sound Spectrogram Network We firstly convert the in-
put audio waveform into a spectrogram presentation Xmix

using Short-time Fourier Transform (STFT), and then for-
ward the mixture spectrogram as the input of the Sound
Spectrogram Network. The Sound Spectrogram Network is
implemented using MobileNetV2 (MV2) architecture. The
network converts the input spectrogram of size 1×HS×WS

to a feature map fmix of size CS × HS × WS , where
HS = WS = 256, CS equals to 21 and 28 for MUSIC-
21 and AVE datasets respectively. Note that the number of
produced feature maps CS is equal to the appearance feature
vector dimension CA in the previous section.

Sound Source Separation The sound source separation
module combines the appearance representations fA,n of n-
th source with the sound spectrogram network output fmix

using a linear combination to produce the spectrum fea-
tures fappearance

S,n (the superscript appearance refers to the
Audio-Appearance stage) of size 1 × 256 × 256. With the
sigmoid and thresholding (th = 0.5) operations, the spec-
trum features are converted to binary masks B̂appearance

n .
The output spectrogram is formed by an element-wise mul-
tiplication between the binary mask and the original mix-
ture spectrogram. We forward the output spectrograms
X̂appeearance

S of all the sources from the Audio-Appearance
stage to the upcoming Audio-Motion stage as inputs.

B.3. Audio-Motion Sound Source Separation

Motion Network The Motion Network in the Audio-
Motion stage is pre-trained by the Audio-Motion Embed-
ding (AME) framework in Section B.1. We apply a spatial
average pooling operation over the H

′
and W

′
dimension of

the motion features fM1 to obtain the motion representation
of size CM × T

′
, where CM = 512 and T

′
= 12.

Sound Spectrogram Refinement Network The Sound
Spectrogram Refinement (SSR) network takes the output
spectrograms from the Audio-Appearance stage as inputs.
The SSR has an encoder-decoder architecture. The encoder
SSRE processes the input spectrogram into sound features
fmotion,encoder
S (the superscript motion refers to the Audio-

Motion stage) of size 512 × 16 × 16. The encoder is fol-
lowed by the Audio-Motion Transformer (AMT) module to
fuse the motion and spectrogram features. We employ 8
parallel heads attention layers in the AMT module. The fol-
lowing decoder SSRD produces residual spectrum features

fmotion,decoder
S,n−>m of size 1×256×256. We relocate the identi-

fied residual spectrum components from Audio-Appearance
outputs to our final corresponding spectrum feature fS by
using a Residual Fusion module (Eq. 4). With the sig-
moid and thresholding (th = 0.5) operations, the spectrum
features are converted to binary masks B̂motion. The out-
put spectrogram X̂motion

S is formulated by an element-wise
multiplication between the resulted binary mask B̂motion

and the original mixture spectrogram Xmix. With an in-
verse STFT, we obtain the final separated audio waveforms.

C. Implementation Details
Optimization The proposed model was implemented in
Pytorch using stochastic gradient descent (SGD) with mo-
mentum 0.9, weight decay 1e-4, and batch size 10 for train-
ing. Except the Appearance Network that was pre-trained
on ImageNet uses a learning rate of 1e-4, all the other mod-
ules are trained from scratch using a learning rate of 1e-3.

Evaluation We assess the AME based motions cues in
three different motion related tasks: i) sound source local-
ization; ii) action recognition; and iii) audio-visual sound
source separation. For all the evaluation metrics, higher
value indicates better performance.

In order to give a quantitative evaluation of the AME
motions, in addition to the qualitative visualizations, on the
task of sound source localization, we measure the consen-
sus Intersection over Union (cIoU) and Area Under Curve
(AUC) metrics. Though with the fact that there is no direct
dataset which has the ground truth of motion localization,
we use the detected bounding boxes of mask r-cnn [1] to
indicate the coarse localization of sounding objects.

For the action recognition task, we simply add a fully
connected layer on top of the motion features for classifying
the actions. We measure the performance by reporting the
classification accuracy (Acc) on UCF-101 [2] dataset.

The sound separation performance is measured in terms
of: Signal to Distortion Ratio (SDR), Signal to Interference
Ratio (SIR), and Signal to Artifact Ratio (SAR). SDR and
SIR scores measure the separation accuracy. SAR captures
only the absence of artifacts, hence can be high even if sep-
aration is poor.
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Figure B: Visualization of the CAM responses with MUSIC-21 dataset for AME, COF, and Multisensory.
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Figure C: Visualization of the CAM responses with AVE dataset for AME, COF, and Multisensory.



Video frames Xmix Ground truth AMnet Video frames Xmix Ground truth AMnet

Figure D: Visualization of the sound source separation results using AMnet with mixtures of two different sources from
MUSIC-21 dataset.
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Figure E: Visualization of the sound source separation results using AMnet with mixtures of two different sources from AVE
dataset.
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Figure F: Visualization of the sound source separation results using AMnet with mixtures of three different sources from
MUSIC-21 dataset.
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Figure G: Visualization of the sound source separation results using AMnet with mixtures of two same type sources from
MUSIC-21 dataset.


