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Abstract

3D marker-less motion capture can be achieved by tri-
angulating estimated multi-views 2D poses. However, when
the 2D pose estimation fails, the 3D motion capture also
fails. This is particularly challenging for sports perfor-
mance of athletes, which have extreme poses. In extreme
poses (like having the head down) state-of-the-art 2D pose
estimator such as OpenPose do not work at all. In this pa-
per, we propose a new method to improve the training of
2D pose estimators for extreme poses by leveraging a new
sports dataset and our proposed data augmentation strat-
egy. Our results show significant improvements over pre-
vious methods for 2D pose estimation of athletes perform-
ing acrobatic moves, while keeping state-of-the-art perfor-
mance on standard datasets.

1. Introduction
In recent years, there has been an increase in the use of

cutting-edge technology in the field of sports. For exam-
ple, high speed cameras and magnetic field sensors are used
for goal scoring in soccer, drones are used to track players,
and AI is used to analyze tactics in sports. Various sen-
sors and devices are also used to measure and analyze the
movements and strength of athletes to optimize their move-
ments and manage their physical conditions. In particular,
the estimated posture and 3D skeleton of the human body is
a powerful data to analyze the motion and performance of
athletes.

Existing methods for 3D motion capture of athletes can
be classified into those that use motion sensors and those
that use visual information only. The methods that use mo-
tion sensors can detect the accurate movement of the human
skeleton by attaching markers to the human body. How-
ever, dedicated equipment such as motion sensors are ex-
pensive and the environment for measurement is limited.
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Figure 1. We refine OpenPose with our newly introduce sports
dataset and a augmentation technique to improve the quality of
2D pose estimation in extreme poses.

In addition, markers must be attached on the human body,
which requires expert knowledge and may not be comfort-
able for the athlete. As a consequence, non-invasive tech-
niques such as 3D pose estimation from multi-view RGB
images are preferred ([1, 17, 20, 28, 29],[13]). In general,
existing methods first estimate the 2D pose of the person
in each 2D image and then triangulate the 2D skeletons to
create a 3D skeleton. By doing so, a marker-less, low-cost
system that can be used anywhere can be built. In such sys-
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a) OpenPose skeleton b) OpenPose failure c) OpenPose success (after our refinement)

Legs are detected as arms Legs are corectly detected

Figure 2. From left to right: (a) format of the skeleton used in OpenPose; (b) example of a typical failure case of the original OpenPose
network in sports video; (c) example of the success of our refined OpenPose network when trained with our new dataset and augmentation
technique.

tems, accurate and robust 2D pose estimation is critical.

OpenPose [4] is the most popular method to obtain a 2D
skeleton from a single color image. OpenPose (and follow
up works [18, 27, 22, 7, 30]) consists of a deep convolu-
tional neural network (CNN) that is trained on a large hu-
man database annotated with 2D skeletons (called COCO
dataset [15]). Remarkably, OpenPose shows high accuracy
even for images that contain multiple people. However, in
the field of sports, there are many poses that are not seen in
normal life, such as having the head down, and OpenPose
fails in pose estimation using such images as input. This
is because such extreme poses are few (or even not present
at all) in the COCO dataset used for training OpenPose. In
this paper, we introduce a new labeled sports dataset that
contains many images with extreme poses that allows us to
refine the OpenPose network to predict accurate pose esti-
mates even in extreme cases.

In addition, we propose two solutions to avoid over-
fitting when retraining the network proposed in OpenPose.
The first solution uses data augmentation while the second
solution uses data pre-processing. This allows us to improve
the accuracy of 2D pose estimation for complex poses com-
mon in sports, while keeping state-of-the-art accuracy with
standard data (as seen in COCO dataset).

Figure 1 illustrates an overview of our proposed method.
The contributions of our work are three-fold. (1) We re-
fine OpenPose to handle extreme human poses in sports
performance and performed comparative evaluation. (2)
We introduce a new labelled sport dataset with annotations
generated using our own annotation tool. Our new sports
dataset contains many complex postures that are rare in nor-
mal datasets. (3) We propose and evaluate two different
techniques to prevent over-fitting, which allows drastic im-
provement in sports scenarios while maintaining state-of-
the-art performance on standard datasets.

2. Related Work

2.1. 3d Pose Estimation

In recent years, there has been a lot of research done
on 3D pose estimation[17],[20],[28],[29],[13]. To supervise
the training of deep networks, large datasets with 3D joint
coordinates annotation are required[21],[8],[16],[32]. How-
ever, annotations are in general obtained with using motion
capture systems, which must be manipulated by experts and
strongly limits the amount of 3D training data available. As
a consequence performance of direct 3D pose estimation
methods are not on par with 2D pose estimation methods. In
[23], a convolutional neural network (CNN) is used to im-
prove 3D pose estimation by learning latent representations
using an automatic encoder and considering the structure of
the skeleton.

In [19], the authors propose to discretize the 3D space
around the human body and build a 3D heat map that repre-
sent the occupancy probability of each joint in each voxel.
Then a 3D CNN can be trained using the generated 3F heat
maps to predict the body pose. In [31], the authors pro-
pose to simultaneously train 2D pose estimation and depth
estimation networks. The predicted depth at each joint lo-
cation allows to generate the 3D skeleton without relying
on a 3D training dataset. In [5], a set of 3D pose data and
corresponding 2D poses from multiple directions are used
for training. At inference time, a 2D pose is lifted to its
corresponding 3D pose by matching the 2D estimation re-
sults to a 3D pose library. This allows to generate 3D pose
estimates even in occluded areas. In [9], a 3D skeleton is
generated by triangulation from multiple 2D images, and
two methods: Algebraic Triangulation and Volumetric Tri-
angulation, are used to generate the 3D pose, which greatly
exceeds the performance of existing methods. However, all
these methods still require an accurate and robust 2D pose
estimation. In cases when 2D pose estimation fails (like in
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Figure 3. We have developed our own manual annotation tool to create data for 2D poses to be used as ground truth.

sports videos) these methods do not work at all.

2.2. 2d Pose Estimation

2D pose estimation from a single image or videos
has been extensively researched in the past decade
[18],[27],[22],[7],[30]. And there are many datasets of 2d
human poses that are used for training[12],[6],[14],[10].
Toshev et. al. [25] was the first method that uses deep
learning for 2D human pose estimation. This is a top-down
method in which the person is detected by a detector and
the pose is estimated independently for each person. This
method demonstrated that deep learning is effective for pose
estimation and that cascading is a successful strategy. In
[26], which is also a top-down method, a confidence map
is created for each part in the first stage, and in subsequent
stages, the confidence map is refined by expanding the ac-
ceptance field of the relevance while learning the relevance
between parts by referring to the confidence map of the pre-
vious stage. OpenPose [4] uses a bottom-up method for
extracting key points in the image and then matching them,
which improves the accuracy of pose estimation for multi-
ple persons. In the bottom-up method, the amount of com-
putation does not increase with the increase in the number
of users, but there is a problem that matching takes a long
time. Therefore, OpenPose solved the problem of match-
ing by adopting inter-joint vectors called PAF (Part Affinity
Field), and succeeded in performing high-performance pos-
ture estimation in real time. However, OpenPose fails in
extreme cases such as sports videos.

Some sports datasets have been made publicly available,
such as the Leeds Sport Pose [11] or the 2D SkiPose [3], but
they only contain single views of the person and cannot be
used for 3D pose learning. Our proposed dataset contains
multi-view images, which makes it promising for improving

performance of 3D pose estimators.

3. 2D pose estimation in sports video
2D pose estimation in-the-wild from images or videos

of single or multiple people has been extensively studied
and robust solutions such as OpenPose exist. However, ef-
ficient 2D pose estimation in sports video remains difficult
because of extreme poses of the athletes that are not repre-
sented in the available annotated 2D human pose datasets.
We demonstrate the limitations of the original OpenPose
in sports scenarios and present a new annotated dataset to-
gether with an efficient data augmentation technique to re-
fine the network.

3.1. Limitations of OpenPose

OpenPose [4] can detect the poses of multiple people in
real time with high accuracy from a single image (figure 1).
However, when a person is in an extreme pose such as in-
verted position (head down), OpenPose fails to estimate the
correct pose (figure 2 b)). For example, the hands and feet
are estimated reversely. This is because the COCO dataset
[15] used for training the network does not contain enough
unusual poses such as people being upside down.

OpenPose is a method that learns a confidence map
called PAF (Part Affinity Field) that represents the label of
a body part and a vector between the different body parts.
In this work, we propose to refine OpenPose so that the net-
work can accurately predict difficult poses such as upside
down poses. Figure 2 b) shows an example of OpenPose
failure and figure 2 c) shows success after applying our re-
finement. As shown in figure 2 a), the red skeleton repre-
sents the left foot, light green represents the right foot, dark
green represents the left hand, and blue represents the right
hand, but in figure 2 b), the colors of the hands and feet are
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a) Joint heat map b) PAF (Part Affinity Field) c) Failure due to over-fitting

Figure 4. From left to right: (a) example of a heatmap for the right wrist; (b) example of a PAF (Part Affinity Field) for the bone (right
shoulder, left elbow); (c) example of a failure due to over-fitting.

switched, indicating that the pose estimation failed.

3.2. Our annotated sports dataset

The original OpenPose network is trained is the publicly
available COCO dataset [15]. The COCO dataset consists
of a training dataset that contains 64115 images (includ-
ing human bodies with annotations) and a validation dataset
that contains 2693 images with annotations. In this dataset
(and other publicly available human datasets such as [2]),
complex poses such as people with the head upside down
and their annotations are rare. In this paper we introduce a
new human pose dataset specifically tailored to sports sce-
nario that contains many images of extreme poses common
in sports videos with precise ground truth annotations ob-
tained manually. We call this dataset the Kanoya dataset.

Our Kanoya dataset consists of multiple series of videos
of gymnasts performing acrobatic movements (see the sup-
plemental material for some examples). Each video consists
of 25 seconds of the athletes performing multiple move-
ments such as backflips. These videos were shot simul-
taneously from multiple directions (all cameras were cali-
brated and synchronized). As a consequence the estimated
2D poses can also be easily triangulated with the known
camera parameters to generate ground truth 3D poses (al-
though this is out of the scope of this paper). The videos
from the front and the back were divided into 750 frames
each (1500 frames in total), and 18 key points were anno-
tated for each frame using our own annotation tool (figure
3). Since OpenPose requires only 17 annotations (exclud-
ing the neck), we converted the annotations after correcting
them in the GUI. Of the 1500 annotations modified, 1200
were used for training and 300 for validation.

Pose annotation tool OpenPose often fails to estimate ex-
treme poses such as backflips and joints with occlusions.
Therefore, we have developed our own annotation tool to
correct such OpenPose estimation errors (figure 3). All that
is required to use our tool is to select the original images
and the JSON files that is the initial output of OpenPose.

We developed the tool in Python and so that we can eas-
ily modify the position of any wrongly estimated joint by
dragging it with the mouse. As other specific functions,
we can copy and paste a pose from other frame and undo.
As a consequence, our annotation tool allows us to quickly
and intuitively fix OpenPose errors and generate high qual-
ity ground truth annotations. We will make our annotation
tool publicly available upon acceptance

3.3. OpenPose Refinement on sports dataset

As shown in figure 1, we use the pre-trained weights
of OpenPose at initialisation and refine the weights in the
network using the Sports sports dataset introduced in the
previous section. We optimize the network by adjusting
the hyper-parameters based on the output loss information,
heatmap (figure 4 a)), PAF (Part Affinity Field) (figure 4 b))
and inference results.

3.4. Data augmentation method

By re-training OpenPose using the strategy described
above, pose estimation accuracy can be drastically im-
proved for the case of sports videos (head upside down
etc...). However, the drawback of this approach is that the
network over-fits the sports dataset and performance signif-
icantly degrades for standard poses (as shown in figure 4 c)
for example). To prevent the network to over-fit the Sports
dataset and maintain state-of-the-art performance on stan-
dard datasets, we propose to re-train OpenPose by combin-
ing both COCO and Sports datasets.

The straightforward strategy would be to simply mix the
COCO dataset and the Sports dataset and re-train OpenPose
on this combined dataset (we call this approach ”Mix”).
However, while the COCO dataset contains about 65000
images, the Sports dataset contains only 1500 images. The
number of raw data in our sports dataset is insufficient to
balance the number of image in the original dataset and
therefore the ”Mix” approach does not allow to learn ex-
treme poses.

To balance the two datasets, the solution is to perform
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Figure 5. Illustration of our proposed pre-rotation method

data augmentation. This means to generate synthetic anno-
tated images of sports video from the captured data. This
can be done by rotating the input images with various an-
gles. With data augmentation, we increase the number of
training data for sports scenarios, which allows us to re-
train OpenPose with a balanced dataset to achieve accurate
and robust pose estimation in various situations.

3.5. Pre-rotation method

We also propose an alternative approach that does not
require re-training of OpenPose or data augmentation. The
key idea here is to pre-process all input images before feed-
ing them to OpenPose so that the input images fit the dis-
tribution of the COCO dataset (i.e., the head is positioned
at the top of the image and the feet are positioned at the
bottom of the image). By doing so the original pre-trained
OpenPose network can be directly use as it is. This also al-
lows us to clearly evaluate the advantages of building new
datasets tailored for sports activity and data augmentation
technique.

Each input image is rotated several times with different
angles and fed to the (original) OpenPose network. The
difficulty here is that we do not know where are the feet

and the head, so we do not know the best rotation to correct
the image. Instead, we propose to try several rotations and
retain the best one according to the output confidence of
OpenPose. Namely, we rotate the images in eight directions
as input for OpenPose’s inference, and obtain eight output
results. We use the sum of the confidence scores of the key
points (which is one of the outputs of OpenPose) and select
the most appropriate one among the 8 as the final output.
Figure 5 illustrates the pipeline for our pre-rotation method.

4. Experiments
We perform both quantitative and qualitative compar-

ative experiments to evaluate the advantages of our pro-
posed method and the benefits of using our newly intro-
duced sports dataset.

4.1. Validation method

We used two test datasets for validation: the validation
set of COCO dataset and a subset of our newly introduced
sports dataset. First, we use the COCO dataset validation
dataset, which was used to validate the conventional train-
ing of OpenPose, and by using this dataset for validation
we confirm whether the accuracy of the original OpenPose
is maintained without over-fitting to extreme poses (such as
head upside down) after re-training. Second, we use our
proposed sports test data set, which consists of 81 images
and annotations extracted from a different video than the
one used for training. By using this dataset, we evaluate to
what extent OpenPose can estimate complex postures such
as those taken by athletes in acrobatic figures.

The AP score provided in the COCO dataset measures
the truth of Oks, which is a value indicating the degree of
association between the estimated value of the key point and
the true value. To compute the AP we use multiple thresh-
olds, and the integral of Precision and Recall with respect
to the ground truth. The AP score is the integral value of
Precision and Recall. For each threshold value, compar-
isons are generally made using three indices: AP50 is the
AP score for a threshold value of 0.5, AP75 is the AP score
for a threshold value of 0.75, and AP is the average of AP50,
AP55, AP60, ..., AP95. The AP scores were computed for
each test dataset and compared to each other to evaluate the
results. In the computation of Oks, the area of the human
part is required, but the COCO validation data set also holds
the annotation information of the area, while the sports data
set does not. Therefore, we computed the Oks by using the
value of half of the Bounding box as the person instead.
For this reason, we can not directly compare the AP scores
between the two test data sets.

4.2. Results

We compared six methods: the original OpenPose,
OpenPose re-trained using the sports dataset, OpenPose re-
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Table 1. Comparative quantitative results of 2D pose estimation when using different refinement strategies.
COCO validation dataset Sports test dataset

AP AP50 AP75 AP AP50 AP75
Original [24] 0.457 0.712 0.475 0.194 0.427 0.081
1. Retrain 0.245 0.478 0.225 0.461 0.828 0.446
2. 1 + Augmentation 0.143 0.304 0.116 0.521 0.903 0.545
3. 1 + Mix 0.378 0.645 0.37 0.29 0.725 0.165
4. 2 + 3 0.413 0.675 0.419 0.483 0.892 0.412
Pre-rotate 0.374 0.639 0.37 0.221 0.627 0.061

trained with using the augmented Sports dataset (with us-
ing our proposed method for data augmentation), OpenPose
re-trained with mixing the Sports dataset with the COCO
dataset (Mix), OpenPose re-trained with mixing COCO
dataset and the augmented Sports dataset, and the pre-
rotation method. Table 1 shows the results of AP, AP50, and
AP75 for the two test data sets (sports dataset and COCO
dataset).

Because the two datasets differ in the size of the data and
the method of estimating the area of the person area neces-
sary for computing the AP score, it is difficult to compare
the values between the two datasets. Nevertheless, from the
results, it can be seen that by re-training using the sports
data set, the value for the sports test data set improved sig-
nificantly from 0.194 to 0.461, indicating that the estima-
tion accuracy for extreme poses has improved. On the other
hand, the result for the COCO test data set dropped from
0.475 to 0.225, which means that there is over-fitting.

We proposed two methods to counter the problem of
over-fitting: data augmentation and pre-rotation. From our
results we observed that the accuracy for extreme poses was
the best when using the data augmentation strategy. More-
over, the Mix method had the effect of maintaining the ac-
curacy of the original OpenPose on conventional dataset
(COCO). The combination of the two datasets with the
data augmentation method produced results with accuracy
of 0.483 for the sports test dataset and 0.413 for the COCO
test dataset. The accuracy of the pre-rotation method was
0.221 for the sports test dataset and 0.374 for the COCO test
dataset. The accuracy of the pre-rotation method was infe-
rior to that of the method using re-training. The reason for
this is that simply rotating the images so that the upper body
is positioned at the top of the image still results in extreme
poses, such as legs open with 180 and feet not touching the
ground. Such poses are not frequent in the COCO dataset
and 2D pose estimation remains difficult. In addition, the
time required for 2D pose estimation increases by a factor
of 8. As a consequence, the method using re-training is
more effective than the pre-rotation method when consider-
ing real-time applications.

Figure 6 shows the changes in 2D pose estimation accu-
racy with respect to the number of images from the COCO
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of data from the COCO dataset using in mixing with our sports
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dataset used when mixing the COCO dataset with the sports
dataset. Experiments were conducted under various condi-
tions: with pre-rotation method and with different data aug-
mentation. The horizontal axis represents the number of
images from the COCO dataset that are mixed and the ver-
tical axis representing the AP score. The orange line shows
the results obtained on the sports test dataset, and the blue
line shows the results obtained on the COCO test dataset.
From the graph, we can see that the results obtained on the
COCO test data set improved as the number of images from
the COCO dataset increased. We also found that combining
mixing with data augmentation improves results obtained
on both the COCO and sports datasets.

As shown in figure 7, data augmentation increases the
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Original

Retrain with our method

Figure 8. Qualitative comparison between results obtained by original OpenPose and our method on the sports test dataset

variation of data used for re-training and significantly im-
proves the estimation accuracy for extreme poses such as
those seen in sports videos. On the other hand, the accuracy
for 2D pose estimation on the COCO test dataset tends to
decrease. This is because in our sports dataset introduced
in this paper, there is only one person in the images, while
in the COCO test dataset, there are multiple people in the
image. One of our future work will be to expand our sports
dataset with multiple athletes in the videos.

Figures 8 and 9 show qualitative comparison between
results obtained with the original OpenPose method and
our proposed method (data augmentation + Mix) with im-
ages sampled from both our sports dataset and the COCO
dataset. As shown in figure 8, the original OpenPose
method failed in extreme poses such as head upside down,
but our proposed method was able to output accurate 2D
poses estimates on these images. Note that the color of the
skeleton output by OpenPose is wrong (see figure 2 a)): the
legs are detected as arms. In addition, as shown in figure
9, we can see that our Mix + augmentation method effec-
tiely prevent the network to over-fit to the sports dataset and
maintain the accuracy of the original OpenPose on standard
poses.

Figure 10 shows comparative results on images on-the-
wild sampled from videos taken from YouTube. These re-
sults show that our proposed method is robust and can be
used efficiently on real scenarios, which is promising for

various applications in sports.

5. Conclusion

In this paper, we proposed a method for estimating 2D
poses from a single image, even in extreme cases such as
athletes performing acrobatic moves. We proposed to refine
the original OpenPose network with our newly introduced
sports dataset and an efficient data augmentation and mix-
ing strategy. Our proposed method allowed to drastically
improve the accuracy and robustness of 2D pose estimation
in extreme cases, while maintaining state-of-the-art perfor-
mance on standard poses. We demonstrated that our pro-
posed method can be used to estimate complex 2D poses
from sports videos in-the-wild. This could also be applied
for winter sports like freestyle skiing where the athletes of-
ten have extreme posture. Our method does not require
any markers or special equipment, which is promising to
make motion data collection and analysis of athletic activi-
ties more accessible.
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Figure 9. Qualitative comparison between results obtained by original OpenPose and our method on the COCO validation dataset
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Figure 10. Qualitative comparison between results obtained by original OpenPose and our method on on-the-wild images taken from
YouTube
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