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Abstract

Athletes typically undergo regular evaluations by train-
ers and coaches to assess performance and injury risk.
One of the most popular movements to examine in athletes
needing lower extremity strength and power is the vertical
jump. Specifically, maximal effort countermovement and
drop jumps performed on bilateral force plates provide a
wealth of metrics. However, the expense of the equipment
and expertise needed to interpret the results limits their use.
Computer vision techniques applied to videos of such move-
ments are a less expensive alternative for extracting com-
plementary metrics. Blanchard et al. [4] collected a dataset
of 89 athletes performing these movements and showcased
how OpenPose could be applied to the data. However, ath-
lete error calls into question 46.2% of movements — in
these cases, an expert assessor would have the athlete redo
the movement to eliminate the error. Here, we augmented
[4] with expert labels of error and established benchmark
performance on automatic error identification. In total, 14
different types of errors were identified by trained annota-
tors. Our benchmark models identified errors with an F1
score of 0.710 and a Kappa of 0.457 (Kappa measures ac-
curacy over chance). All code and augmented labels can be
found at https://blanchard-lab.github.io/apev.github.io/.

1. Introduction
Athletes of any caliber, from professionals to first

time amateurs, try to limit injury while maximizing train-
ing/exercise. At the professional level, this balance is
facilitated by trainers and coaches who perform expert-
level assessments of athletes [5, 19] and customize training
plans [34, 45]. Amateur athletes typically do not have ac-
cess to the same equipment [20, 4] or personnel employed
by professional athletes [9]. However, RGB cameras are
ubiquitous. A computer vision system that performs per-
sonalized assessments using only RGB cameras would scale
to athletes of all means. As an initial step toward such a sys-
tem, it is necessary to assesses if the athlete performed the
movement correctly.

Figure 1. For athletes that rely on lower extremity strength and
power, both countermovement and drop jumps have been used to
assess metrics related to performance and injury risk. In the pur-
suit of a system to automatically provide feedback to athletes, we
annotated a dataset of correct and incorrect jumps and trained ma-
chine learning models to automatically identify when jumps have
been performed incorrectly. An ‘Incorrect’ technique includes
landing on one foot, and the ‘Correct’ technique is landing simul-
taneously with both feet.

RGB video has already been proven to be a valuable
modality for athlete evaluation. Videos of movements are
commonly used by clinicians to assess injury risk [40] and
to perform performance evaluations [12, 29, 31, 11, 13].
Estimating pose and joint locations from video has be-
come ubiquitous in computer vision [12, 29, 31, 11], and
such information is even extractable from athletes in real
time (for example, joints can be estimated while an athlete
swims [29, 31]).

Blanchard et al. [4] published a video dataset of 89 ath-
letes performing countermovement and drop jumps. Such
movements are regularly used by professional trainers to
evaluate athlete performance. However, performance eval-
uation was not the original intent of the dataset — Blan-
chard et al. [4] were explicitly interested in assessing jumps
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for ACL injury risk. Since performance evaluation was not
the intent, 46.2% of the jumps featured errors that make
them unsuitable for evaluating performance [8]. We present
APE-V — Athlete Performance Evaluation using Video —
a performance-centric augmentation of [4] containing fine-
grained annotations of errors found in the dataset. Specif-
ically, we provide expert annotations of 14 error types for
the countermovement and drop jump videos.

Finally, we establish an evaluative pipeline to automat-
ically measure an athlete’s performance without excess
person-power, expertise, or machinery. We experiment with
both pose estimates (from OpenPose [6]) and raw video
frames, which we use to train three machine learning ar-
chitectures (LSTM, ResNet-18, and TSM pretrained action
recognition). We conduct hyperparameter optimization for
architectures in all three scenarios and report results for the
best models. Note, all evaluations are done using cross-
validation, with no overlap between athletes in the training
and test set, thereby establishing a person-independent as-
sessment pipeline.

In summary, our work makes the following contribu-
tions:

1. This is the first work to provide expert annotations of
14 kinds of athlete errors found in countermovement
and drop jumps.

2. We establish benchmarks showcasing the feasibility of
automatic, person-independent assessment of athlete
movements.

3. We investigate both raw-video and pose-centric meth-
ods, finding that pose-centric methods generalize bet-
ter to unseen athletes.

2. Related Work
Athlete performance evaluations are conducted by train-

ers and coaches. However, traditionally, these evaluations
require specialized equipment (e.g., force plates, leap mea-
surement software, and agility ladders [2, 1, 43]). Force
plates are one of the most common methods for such evalu-
ations. From the force outputs, other metrics such as center
of mass displacement and velocity as well as power out-
put during the evaluative jumps [18, 23, 24, 42]. Studies
have also been conducted using vertical jumps, to assess
the Change of Direction Speed (CODS) along with inter-
limb asymmetries [25, 35, 41].

Various screening methods have been used to analyze
these jumps. For example, the Landing Error Scoring Sys-
tem (LESS) [48] has a trained practitioner evaluate a bilat-
eral drop jump [38, 39, 40, 48], and the Functional Move-
ment Screen (FMS) evaluates fundamental movement pat-
terns in individuals with no pain complaints or muscu-
loskeletal injury [27]. The LESS was developed to identify

athletes with higher risk of injury, which can be utilized dur-
ing a team screening session to save time and resources, and
is shown to be accurate and reliable. Videos [40] for multi-
ple angles of athlete jumps were recorded, and LESS scores
were assigned in conjunction with the erroneous movement
patterns across the multiple planes of motion. LESS evalu-
ations showed that ACL injury risk could be visually iden-
tified from movement alone. This gives us confidence that
injury risk and performance assessments can be done using
only a visual medium.

Recent automated techniques used to analyze athlete mo-
tion include Einfalt et al.’s [12] technique of using 2D hu-
man pose sequences as a representation of the actual mo-
tion. They demonstrate two approaches for event detection
in pose sequences — using multiple fixed cameras and do-
main information of sport, or using sequence recordings of
athlete’s motion from a single camera.

El-Sallam et al. [13] provide a markerless system for ath-
lete performance optimization in the sports of pole vault,
javelin throw, and jumping. They use multiple calibrated
cameras for multiple view captures. This method segments
the subject’s body from video, and a 3D representation of
the body is then reconstructed using silhouettes, which is
then tracked over the frames in video. This method can be
extended to other sports which do not explicitly need body
joint detection, but can benefit from detection of the ath-
lete body as a whole. Another markerless method of human
motion tracking was developed by Saini et al. [44]. Their
primary purpose was to detect the pose and position of the
subject from video by comparing a rendered body model
with the image in a video frame.

Elhayek et al. [15] suggest a method for capturing multi-
ple 3D human skeletal movements, even with cluttered and
moving backgrounds in videos captured from regular-use
camera setups such as mobile phones. This method requires
fewer cameras, and they may be unsynchronized. For single
camera scenarios, Mehta et al. [37] combine a CNN-based
pose regressor and kinematic skeleton fitting to propose a
real-time 3D skeletal pose estimation method. This method
is able to create a 3D representation of the real-time motion
of the subject in a video by reconstructing a 3D skeleton
based on joint predictions. In addition to 3D skeletal in-
formation, Cao et al. [7, 6] developed an efficient tool to
detect 2D poses of multiple subjects in an image. They use
Part Affinity Fields (PAFs) to establish pairwise relation-
ships between body parts using their location and orienta-
tion. The technique of Elhayek et al. [14] combines a stable
skeleton motion capture method and 2D joint detection us-
ing ConvNet for a kinematic skeleton model.

For identifying lower-body injury risk in athletes, Blan-
chard et al. [4] released a multi-angle video dataset of fe-
male athletes performing two specific athletic movements:
countermovement and drop jumps. These evaluative jumps
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Figure 2. Important Events of an Evaluative Jump. The ‘Start of Jump’ is different for both jump types, while other events are similar.

are used for research in sports medicine for identifying ath-
leticism and factors in an athlete’s jump motion indicating
ACL injury risk. The dataset is targeted towards Computer
Vision researchers, who could build accurate models and
track key movements in these jumps, for evaluating injury
risk in the participants. One of the main features of this
dataset is that the collection mechanism can be easily repli-
cated, as it is inexpensive when compared with the high-end
approaches that require non-portable setups.

Our work specifically looks at RGB video recordings
of athletes performing two evaluative jumps: the counter-
movement and the drop jumps. The dataset consists of
videos in which participants perform these evaluative jumps
[4]. Unlike previous work, we note that athletes sometimes
err when performing these movements; we provide expert-
level annotation of such errors and train computer vision
models to identify them. Long term, such models will be es-
sential for ensuring that performance or risk assessments are
accurate, and no measures are estimated from faulty data.

3. Experiments
3.1. Dataset

We augment the dataset from Blanchard et al. [4] with
expert annotation of errors that would prevent accurate as-
sessment of performance. Blanchard et al. [4] recorded
videos from three different angles — center, left and right,
as shown in Figure 3, of 89 participants performing two
evaluative jumps — countermovement and drop jumps, as
shown in Figure 2. Details on the original dataset can be
found in [4] — however, note the dataset was expanded
post-publication (from 55 athletes to 89). Summary of the
extended dataset is presented in Table 1.

3.1.1 Annotation of Errors in jump motion

We found 14 types of errors in the videos — errors are bro-
ken down in Table 2. Note that each jump may have multi-
ple errors. A correct evaluative jump performed by a partic-

Figure 3. The dataset contains videos from multiple views.

Table 1. Video Dataset summary.
TOTAL NO. OF JUMPS 582

NO. OF COUNTERMOVEMENT JUMPS 346

NO. OF DROP JUMPS 236

TOTAL NO. OF PARTICIPANTS 89

NO. OF PARTICIPANTS PERFORMING

COUNTERMOVEMENT AND DROP JUMPS

47

NO. OF PARTICIPANTS PERFORMING ONLY

COUNTERMOVEMENT JUMPS

41

NO. OF PARTICIPANTS PERFORMING ONLY

DROP JUMPS

1

NO. OF CAMERA VIEWS FOR EACH VIDEO 3

TOTAL NO. OF VIDEOS 1746

CAMERA SETTINGS: NO FIXED CAMERA

ANGLE AND HEIGHT.

ipant has a few characteristics; we used these characteristics
to identify pivotal errors in jumps. First, the participant as-
sumes a straight posture while looking forward [33], jump-
ing high enough after an initial squat, and then landing back
in a similar position from which they started [28]. During
these jump motions the participant might not start with the
correct position, or, they might perform an irregular land-
ing. Additionally, for the drop jump, the participant drops
from a box onto the force plate [17]. A well executed drop
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Table 2. Errors in jump motion. 14 annotated errors (sub-categories) in the evaluative jumps, along with the number of samples in the
dataset. 10 errors are annotated for both jump types, while 4 errors are specific to the drop jump. Errors in bold are the 6 primary errors
used to train the classification models [See “Errors in jump motion”, Section 3.1].

ERRORS (OVERALL CATEGORIES) JUMP
TYPE

ERRORS (SUB-CATEGORIES) NO. OF
SAMPLES

START POSITION BOTH FEET LESS THAN SHOULDER WIDTH APART 30

INITIAL POSITION, AFTER START DROP JUMP

JUMPED UPWARD FROM BOX, RATHER THAN
FORWARD

22

ASYMMETRIC LANDING AFTER JUMP 15

FIRST LANDING ON FORCE PLATE DROP JUMP
SQUAT TOO LOW 37

HEELS TOUCH FORCE PLATE 83

FIRST OR FINAL LANDING ON FORCE

PLATE
BOTH

KNEE COLLAPSE 64

BOTH FEET NOT ON RESPECTIVE PLATFORMS 5

LAND OFF-BALANCE 49

DURING JUMP
BOTH

OFF-BALANCE 79

BODY TWISTS, LANDING AT DIFFERENT ANGLE 74

FINAL LANDING ON FORCE PLATE BOTH

LANDED AT DIFFERENT POSITION FROM
INITIAL LANDING

133

EXCESSIVE HIP AND KNEE FLEXION BEFORE
RETURNING TO UPRIGHT STANDING
POSITION

78

TAKE ADDITIONAL STEPS TO MAINTAIN
BALANCE

94

FEET LESS THAN SHOULDER WIDTH APART 3

culminates with both feet touching simultaneously [46], fol-
lowed by a quick reflex jump. Associated errors include
jumping instead of dropping or lingering on the force plate
for too long, rather than immediately jumping.

The most impactful errors are emphasized in bold in Ta-
ble 2. The other eight errors tend to be more subtle devia-
tions from the correct body movement, which provide sup-
porting information regarding motion flaws in the jumps. In
the long term, these annotations are essential for proper as-
sessment, but for now, we do not consider jumps with only
subtle deviations to be erroneous.

Two expert annotators labeled a subset (17%) of the
dataset. Cohen’s Kappa was used to assess inter-annotator
agreement. Across all errors, the average Kappa was 0.89
(Max Kappa is 1.00), indicating very high agreement.

3.2. Model Training and Evaluation

We conducted baseline experiments to investigate the
usability of the dataset and its corresponding annotations.
We focused on two major questions: is video informa-
tion enough to facilitate detection of errors during motion
of evaluative jumps? And, if video information is good
enough, what kinds of features (raw video or pose) provide
optimal performance?

For our experiments, we used two types of video infor-
mation — raw frames and pose information from Open-

Figure 4. First Row: Key points from pose detection for a coun-
termovement jump example; Second Row: Key points of a drop
jump example with pose detection.

Pose [6]. We also processed the videos to select a subset
of frames for evaluating the models with less dense tempo-
ral information. The frames with differences in intensities
larger than a data-defined threshold were retained. Different
deep neural network architectures were employed on each
type of input data to obtain view-specific detection results.
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Table 3. Dataset sub-categories used for experiments.
SR.
NO.

DATASET CATEGORY FEATURES TRAINING

1 CLIPPED ATHLETIC DATA:
EVERY 10TH FRAME,
RESIZE 256X256

ATHLETE JUMP VIDEO FRAMES RESIZED TO 256X256.
INCLUDES EVERY 10TH FRAME FROM VIDEO. VIDEO

RATE MODIFIED TO 15 FPS.

TRAIN CNN AND LSTM
COMBINATION

ARCHITECTURES, AND TSM
ARCHITECTURES USING

VIDEO FRAME FEATURES.

2 CLIPPED ATHLETIC DATA:
KEYFRAMES, RESIZE

256X256

ATHLETE JUMP VIDEO FRAMES RESIZED TO 256X256.
INCLUDES ONLY KEY-FRAMES FROM VIDEO. VIDEO

RATE MODIFIED TO 15 FPS.

3 OPENPOSE [6] SKELETON

OUTPUTS: CONFIDENTLY

DETECTED FRAMES

SKELETON OUTPUTS GENERATED USING OPENPOSE [6].
FRAMES STORED IN WHICH HIPS, KNEES AND ANKLES

DETECTED WITH CONFIDENCE ABOVE 0.3. TRAIN LSTM MODELS USING

X AND Y COORDINATES OF

THE DETECTED HIPS, KNEES

AND ANKLES.

4 OPENPOSE [6] SKELETON

OUTPUTS: KEYFRAMES

SKELETON OUTPUTS GENERATED USING OPENPOSE [6].
FRAMES STORED IN WHICH HIPS, KNEES AND ANKLES

DETECTED WITH CONFIDENCE ABOVE 0.3, WHICH ARE

THEN FILTERED TO KEEP ONLY KEYFRAMES.

Table 4. Hyperparameter Search Space for network architectures. Learning rate search range used for all three types is [0.0001 - 0.1].
MODEL TYPE PRE-TRAINED TRAINABLE LAYERS HIDDEN NODES BATCH SIZE EPOCHS

LSTM 7 1 - 4 10-200 [8, 16, 24, 32,
40, 48, 56,
64, 128, 256]

10-200

LSTM +
RESNET-18
FEATURES

3 UPTO 5 END LAYERS NA [8, 10, 12, 14,
16, 24, 32,
40, 48]

5-45

TSM [32] 3 UPTO 6 END LAYERS NA [4, 8, 16] 15-75

3.2.1 Training procedure

A standard training procedure was followed across all ex-
periments. The experiments were designed to run hyperpa-
rameter search from the given set of hyperparameters [Table
4]. Hyperopt [3] with the Tree Parzen Estimator (TPE) al-
gorithm was used for this purpose. For each hyperparame-
ter combination, the models were trained and evaluated us-
ing 5-fold cross validation. K-fold cross validation helps
to evaluate a given model on the entire dataset, providing
more robust measures of performance for small datasets. As
features in the video frames might be similar for a particu-
lar participant, the data is distributed into folds based on
participants and not jumps. Each model trained on (K-1)
partitions, during cross validation, is then evaluated for val-
idation loss at every epoch. The model corresponding to the
lowest validation loss is saved. Note that not all participants
performed the same number of jumps.

Models saved for each of these data folds at the end
of the training cycle were then evaluated using Cohen’s
Kappa score and F1 score (positive error class). These
values were used for selecting the best models during hy-
perparameter search. The data is unevenly distributed —
46% positive class, and 54% negative class. Cohen’s Kappa
represents how well a model performs when compared to
a model that randomly predicts an output (i.e., accuracy

above chance). A positive score for Kappa indicates that the
model performs better than chance. After individual mod-
els are trained for each of the five data folds, metric scores
were averaged across folds.

3.2.2 Network Architecture

Our experiments used three machine learning architec-
tures. The first experiment [Section 4.1] used Long Short-
Term Memory (LSTM) networks, which were trained from
scratch on pose estimation joint data. This information
was extracted from the evaluative jump videos using Open-
Pose [6], as discussed in Section 3.1. The LSTM-based
architecture was chosen to learn the order dependence be-
tween items in a long data sequence, and is suitable for
the task of detecting changes in athlete motion through the
video frames. The models were trained on data subsets
three and four [Section 3.1, Table 1].

The second and third set of experiments [Section 4.2] are
end-to-end approaches, as they operated directly on video
frames. The second type of architecture used a combination
of a pretrained ResNet-18 and an LSTM architecture. The
ResNet-18 [22], after fine-tuning, acted as a feature extrac-
tor for video frames in the training data. These features
were fed into an LSTM architecture, which was trained
from scratch. We chose ResNet-18 as the feature extrac-
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Table 5. OpenPose Experiments: Comparison between best models trained on data from Confident Frames (CF) — which are selected
based on confidence threshold of 0.3 — and Confident Keyframes (CKF).

EXPERIMENT TEST ACC. % F1 SCORE:
ERROR IN
JUMP

F1 SCORE: NO
ERROR IN JUMP

COHEN
KAPPA

C
F

CENTER 69.2 ±8.01 0.629 ±0.10 0.737 ±0.07 0.374 ±0.16
LEFT 62.2 ±4.60 0.508 ±0.21 0.682 ±0.04 0.224 ±0.13
RIGHT 67.8 ±3.63 0.635 ±0.06 0.716 ±0.03 0.356 ±0.08
COMBINED VIEW 72.4 ±4.72 0.710 ±0.05 0.743 ±0.05 0.457 ±0.09

C
K

F

CENTER 64.6 ±6.80 0.514 ±0.26 0.698 ±0.10 0.268 ±0.18
LEFT 63.4 ±5.73 0.509 ±0.24 0.692 ±0.06 0.250 ±0.16
RIGHT 67.0 ±3.61 0.625 ±0.08 0.710 ±0.02 0.337 ±0.09
COMBINED VIEW 70.8 ±6.83 0.658 ±0.10 0.744 ±0.06 0.407 ±0.15

Table 6. OpenPose experiments – Threshold comparison. We verify the use of Threshold 0.3 across all experiments for extracting the
OpenPose skeleton outputs. Comparison is made based on the Cohen Kappa score. The values in bold signify the best results in that
experiment, and the corresponding column gives the threshold used for pose data.

EXPERIMENT COHEN KAPPA

THRESHOLD 0.1 THRESHOLD 0.2 THRESHOLD 0.3 THRESHOLD 0.4 THRESHOLD 0.5

C
F

CENTER 0.117 0.248 0.374 0.285 0.239

LEFT 0.153 0.155 0.224 0.153 0.175

RIGHT 0.130 0.314 0.356 0.224 0.325

C
K

F

CENTER 0.138 0.231 0.268 0.191 0.203

LEFT 0.246 0.191 0.250 0.194 0.142

RIGHT 0.195 0.234 0.337 0.296 0.178

tor instead of deeper CNNs as we wanted to train simple
and efficient architectures for the baseline models; ResNet-
18 has good representation capacity as shown in recognition
tasks on ImageNet [10], as well as other tasks like gender
and activity recognition [49] and head pose estimation [16].
Finally, a fine-tuned version of the original TSM [32] action
recognition model was used for the third set of experiments.
It used a Temporal Shift Module (TSM) which shifted a
subset of image features along the temporal dimension, pro-
viding information passage between successive frames. The
architecture provides state-of-the-art performance on video
related datasets [47, 26, 21], hence we use it as a baseline to
evaluate jump videos with the curated error labels. We only
show results from the second and third approaches using
data subset one [Section 3.1, Table 1], as keyframe selection
did not have a significant effect on performance. All three
architectures were trained using multiple combinations of
hyperparameters, as discussed in Table 4.

3.2.3 Multi-view Fusion

To understand if a model trained on multiple sources of in-
formation for the same task could perform better than the
individual models, we perform experiments by combining
the best models trained on individual view data. Specifi-

cally, the classification layer of the best models trained on
each of these views was replaced with a separate classifier
layer at the end of the combined architecture. This new
layer was trained for a few epochs, and the trained model
was then evaluated in the same manner as the individual
models described in Section 3.2.1.

4. Results and Analysis

Using different data modalities and architectures de-
scribed above, we obtain results on the novel annotated
dataset for the task of erroneous jump evaluation. We fo-
cus on answering questions such as which type of data input
and architecture performs better, and how does view infor-
mation affect detection results.

4.1. Models trained on OpenPose [6] skeleton

This experiment evaluates if lower body joint coordi-
nates detected on athletes performing the evaluation jumps
are sufficient to train a machine learning model to distin-
guish between erroneous jumps and those useful for athlete
evaluation. We used joint coordinates detected from Open-
Pose [6] for hips, knees, and ankles, for the full length of
the videos or selected frames, to train a LSTM model.
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Table 7. Experiments on confident frames extracted from Videos: ResNet-18 + LSTM models.
EXPERIMENT TEST ACC. % F1 SCORE: ERROR

IN JUMP
F1 SCORE: NO
ERROR IN JUMP

COHEN KAPPA

CENTER 62.9 ±4.15 0.642 ±0.04 0.611 ±0.06 0.270 ±0.08
LEFT 66.1 ±5.51 0.593 ±0.13 0.693 ±0.06 0.298 ±0.13
RIGHT 62.9 ±6.14 0.627 ±0.07 0.620 ±0.09 0.266 ±0.11
COMBINED VIEW 67.5 ±3.72 0.690 ±0.04 0.653 ±0.06 0.360 ±0.07

Table 8. Experiments on confident frames extracted from Videos: Fine-tuning TSM pretrained models.
EXPERIMENT TEST ACC. % F1 SCORE: ERROR

IN JUMP
F1 SCORE: NO
ERROR IN JUMP

COHEN KAPPA

CENTER 64.5 ±4.90 0.649 ±0.08 0.627 ±0.08 0.293 ±0.09
LEFT 61.1 ±5.94 0.520 ±0.13 0.652 ±0.10 0.198 ±0.12
RIGHT 62.5 ±8.11 0.580 ±0.11 0.658 ±0.07 0.239 ±0.17
COMBINED VIEW 66.0 ±5.89 0.624 ±0.13 0.675 ±0.04 0.306 ±0.14

Three individual models were trained on lower body
joint data from the center, left, and right view videos us-
ing two types of input sequences. The first category of data
were video frames for which OpenPose was highly confi-
dent in detecting lower body joints. The second category
had frames which highlighted the key pose changes dur-
ing the jump motion. About 100 models, with different
hyperparameters, were trained during each of these exper-
iments, and results from the best performing models were
presented in Table 5. These results show that among the
single view models, the center view provided the best model
performance as it contained more details compared with the
left and right view, which may occlude key points. Also,
dropping some temporal information when using selected
keyframes hurt the performance.

For the view fusion model, we combined the individual
models trained on the different views for each type of data
input. The results showed that the performance of the model
that uses all available view information was better than the
single view models for both the full set of confident frames
and the selected subset. Table 9 shows the error-wise ac-
curacies of both fusion models (see Supplemental Material
for error-wise accuracies of all models presented in the pa-
per). We see that both models perform similarly for the
”Feet less than shoulder width apart” and the squat-related
errors (”Squat too low”, and ”Excessive hip and knee flex-
ion before returning to upright standing position”). This
could mean that reducing the amount of frame data does not
largely affect the performance of the models for errors re-
lated to a fixed position (Feet error), or related to the lowest
point in a movement (squat-related errors). The other errors
show a drop in performances when the number of frames
are reduced; all such errors are motion-related, highlighting
the need for additional transitioning frame data.

4.1.1 OpenPose alternatives: EvoSkeleton and evo-
pose2d

Figure 5. EvoSkeleton outputs for select frames from various par-
ticipants, jump types, and angles.

We explored two alternatives to OpenPose — EvoSkele-
ton [30] and evopose2D [36] — to see if these pose estimat-
ing algorithms provided us with more accurate joint data
than OpenPose. EvoSkeleton [30] showed incompatibility
with the data because it was intended for full bodies. The
videos from Blanchard et al. [4] focus on the lower body,
with the upper body spanning out of frame during the flight
phase. An example sequence is depicted in Figure 5.

The other alternative, evopose2d [36], also performed
poorly on the data. Notably, evopose2D provides a means of
fine-tuning on data. Unfortunately, our video data lacks the
frame-wise keypoint annotations needed for the fine-tuning
process. Thus, we determined neither EvoSkeleton nor evo-
pose2d were acceptable alternatives to OpenPose [4].

4.1.2 Confident Frame Selection from OpenPose

We selected frames where the pose detection model had
a confidence of c or higher in its predictions, as confident
frames for our experiments. To obtain the threshold c, we
performed additional experiments. We trained the same ar-
chitecture with the subset of data extracted using different
thresholds. The architecture and hyperparameters remained
constant, and only the data changed. This helped us eval-
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Table 9. Error-wise model accuracies (%) for the multi-view fusion scenario of presented architectures . F-SW: Feet less than shoulder
width apart; JU: Jumped upward from box, rather than forward; SL: Squat too low; LDP: Landed at different position from initial landing;
EF: Excessive hip and knee flexion before returning to upright standing position; AS: Take additional steps to maintain balance. Number
of instances for each error are provided in parentheses.

EXPERIMENT ACCURACY F-SW (30) JU (22) SL (37) LDP (133) EF (78) AS (94)

OPENPOSE (CF) 72.4 76.7 90.9 91.9 77.4 76.9 65.9

OPENPOSE (CKF) 70.8 80.0 68.2 86.5 66.2 82.1 44.7

RESNET-18 + LSTM 67.5 86.7 95.5 83.8 78.9 83.3 78.7

TSM 66.0 83.3 77.3 81.1 66.9 76.9 69.1

uate the effect of different thresholds used for obtaining a
good set of video pose features from raw video frames.

From the comparison in Table 6, it is observed that mod-
els performed best with joint data extracted with a confi-
dence threshold of 0.3. This threshold eliminates many
noisy frames with fluctuating pose estimations for the lower
body joints, while retaining ample information to train good
models for any of the three views.

4.2. Models trained on Pixel Data from Video
Frames

We evaluated two baseline models trained directly on
pixel information [Section 3.1, Table 1]. We utilized all
frames to train these models, since results in Table 5 indi-
cated that training the models on keyframe information led
to lower performing models.

The results for the model using fine-tuned ResNet-
18 [22] features from video frames used with a LSTM
model trained from scratch, are as shown in Table 7. We see
a trend of improved model performance with the combined
model in comparison to single view models, as witnessed
with the models using pose data. When compared with the
fusion model using the skeleton data, we see an overall dip
in performance. This could be due to extra attributes in
terms of image noise being presented to the model, or due to
the limited ability of the pretrained ConvNet (ResNet-18) to
extract the relevant features even after fine-tuning it on the
available dataset.

The pretrained TSM [32] action recognition model,
which was fine-tuned using the video frame data, was the
third type of model evaluated in our experiments. The TSM
model took as input a specific number of frames. We ran
experiments for training these models on 8, 16, 32, and 64
frames, out of which the models trained on 16 frames per-
formed best. The combined model uses the features from
individual models trained on 16 frames. Results for this
method are shown in Table 8. Individual models perform
similar to the second set of experiments. This could be at-
tributed to the absence of important temporal features with
respect to the reduced number of frames presented to the
model; experiments with input frames greater than 64 could
provide better model performance.

Observing the error-wise accuracies of fusion models of
experiments on pixel data in Table 9, we see an improve-
ment in performance for the error related to a fixed position
(Feet error). The ResNet-18 and LSTM combination’s fu-
sion architecture performs better for errors related to mo-
tion when compared to the models trained on OpenPose
data [Discussion from Section 4.1], indicating that the addi-
tional pixel information improves the overall performance
when identifying motion-related errors.

5. Conclusion

In this work, we presented expert-level error annotations
for a jump video dataset [4] to facilitate fitness assessment
from RGB video. Further, we provided baselines show-
casing that, while these annotations include relatively fine-
grained phenomena, it is feasible to identify them with com-
puter vision techniques. We present automated approaches
to detect and screen out improper techniques present in
jumps performed for athlete evaluation, so that time and ex-
pertise can be allocated for assessing only the correctly per-
formed jumps, and feedback can be provided for improving
jump motion of those which are discarded.

Accurately evaluating athletes based on movements
recorded with ubiquitous RGB cameras has a multitude of
implications for fitness recommendations. Ideally, accurate
evaluations can enable widespread access to state-of-the-art
fitness recommendations. Although this work does not fo-
cus on injury prevention, an implicit side effect of appropri-
ate fitness recommendations is the limitation of overexten-
sion, which can lead to injury. We anticipate that releasing
the resources presented in this work is essential for future
investigations into performance assessments.

References
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